14 research outputs found

    Probabilities of Large Earthquakes in the San Francisco Bay Region, California

    Get PDF
    In 1987 a Working Group on California Earthquake Probabilities was organized by the U.S. Geological Survey at the recommendation of the National Earthquake Prediction Evaluation Council (NEPEC). The membership included representatives from private industry, academia, and the U.S. Geological Survey. The Working Group computed long-term probabilities of earthquakes along the major faults of the San Andreas fault system on the basis of consensus interpretations of information then available. Faults considered by the Working Group included the San Andreas fault proper, the San Jacinto and Imperial-faults of southern California, and the Hayward fault of northern California. The Working Group issued a final report of its findings in 1988 (Working Group, 1988) that was reviewed and endorsed by NEPEC. As a consequence of the magnitude 7.1 Loma Prieta, California, earthquake of October 17, 1989, a second Working Group on California Earthquake Probabilities was organized under the auspices of NEPEC. Its charge was to review and, as necessary, revise the findings of the 1988 report on the probability of large earthquakes in the San Francisco Bay region. In particular, the Working Group was requested to examine the probabilities of large earthquakes in the context of new interpretations or physical changes resulting from the Loma Prieta earthquake. In addition, it was to consider new information pertaining to the San Andreas and other faults in the region obtained subsequent to the release of the 1988 report. Insofar as modified techniques and improved data have been used in this study, the same approach might also, of course, modify the probabilities for southern California. This reevaluation has, however, been specifically limited to the San Francisco Bay region. This report is intended to summarize the collective knowledge and judgments of a diverse group of earthquake scientists to assist in formulation of rational earthquake policies. A considerable body of information about active faults in the San Francisco Bay region leads to the conclusion that major earthquakes are likely within the next tens of years. Several techniques can be used to compute probabilities of future earthquakes, although there are uncertainties about the validity of specific assumptions or models that must be made when applying these techniques. The body of this report describes the data and detailed assumptions that lead to specific probabilities for different fault segments. Additional data and future advances in our understanding of earthquake physics may alter the way that these probabilities are estimated. Even though this uncertainty must be acknowledged, we emphasize that the findings of this report are supported by other lines of argument and are consistent with our best understanding of the likelihood for the occurrence of earthquakes in the San Francisco Bay region

    Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria

    Get PDF
    The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of single skin bacterial species in the production of volatiles that mediate the host-seeking behaviour of mosquitoes has remained largely unknown and is the subject of the present study. Headspace samples were taken to identify volatiles that mediate this behaviour. These volatiles could be used as mosquito attractants or repellents. Five commonly occurring species of skin bacteria were tested in an olfactometer for the production of volatiles that attract A. gambiae. Odour blends produced by some bacterial species were more attractive than blends produced by other species. In contrast to odours from the other bacterial species tested, odours produced by Pseudomonas aeruginosa were not attractive to A. gambiae. Headspace analysis of bacterial volatiles in combination with behavioural assays led to the identification of six compounds that elicited a behavioural effect in A. gambiae. Our results provide, to our knowledge, the first evidence for a role of selected bacterial species, common on the human skin, in determining the attractiveness of humans to malaria mosquitoes. This information will be used in the further development of a blend of semiochemicals for the manipulation of mosquito behaviour

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    Pesticide exposure and cortical brain activation among farmworkers in Costa Rica

    Get PDF
    Background: Previous epidemiological studies have reported associations of pesticide exposure with poor cognitive function and behavioral problems. However, these findings have relied primarily on neuropsychological assessments. Questions remain about the neurobiological effects of pesticide exposure, specifically where in the brain pesticides exert their effects and whether compensatory mechanisms in the brain may have masked pesticide-related associations in studies that relied purely on neuropsychological measures. Methods: We conducted a functional neuroimaging study in 48 farmworkers from Zarcero County, Costa Rica, in 2016. We measured concentrations of 13 insecticide, fungicide, or herbicide metabolites or parent compounds in urine samples collected during two study visits (approximately 3–5 weeks apart). We assessed cortical brain activation in the prefrontal cortex during tasks of working memory, attention, and cognitive flexibility using functional near-infrared spectroscopy (fNIRS). We estimated associations of pesticide exposure with cortical brain activation using multivariable linear regression models adjusted for age and education level. Results: We found that higher concentrations of insecticide metabolites were associated with reduced activation in the prefrontal cortex during a working memory task. For example, 3,5,6-trichloro-2-pyridinol (TCPy; a metabolite of the organophosphate chlorpyrifos) was associated with reduced activation in the left dorsolateral prefrontal cortex (β = −2.3; 95% CI: −3.9, −0.7 per two-fold increase in TCPy). Similarly, 3-phenoxybenzoic acid (3-PBA; a metabolite of pyrethroid insecticides) was associated with bilateral reduced activation in the dorsolateral prefrontal cortices (β = −3.1; 95% CI: −5.0, −1.2 and −2.3; 95% CI: −4.5, −0.2 per two-fold increase in 3-PBA for left and right cortices, respectively). These associations were similar, though weaker, for the attention and cognitive flexibility tasks. We observed null associations of fungicide and herbicide biomarker concentrations with cortical brain activation during the three tasks that were administered. Conclusion: Our findings suggest that organophosphate and pyrethroid insecticides may impact cortical brain activation in the prefrontal cortex – neural dynamics that could potentially underlie previously reported associations with cognitive and behavioral function. Furthermore, our study demonstrates the feasibility and utility of fNIRS in epidemiological field studies
    corecore