1,976 research outputs found

    Unique Features of Odorant-Binding Proteins of the Parasitoid Wasp Nasonia vitripennis Revealed by Genome Annotation and Comparative Analyses

    Get PDF
    Insects are the most diverse group of animals on the planet, comprising over 90% of all metazoan life forms, and have adapted to a wide diversity of ecosystems in nearly all environments. They have evolved highly sensitive chemical senses that are central to their interaction with their environment and to communication between individuals. Understanding the molecular bases of insect olfaction is therefore of great importance from both a basic and applied perspective. Odorant binding proteins (OBPs) are some of most abundant proteins found in insect olfactory organs, where they are the first component of the olfactory transduction cascade, carrying odorant molecules to the olfactory receptors. We carried out a search for OBPs in the genome of the parasitoid wasp Nasonia vitripennis and identified 90 sequences encoding putative OBPs. This is the largest OBP family so far reported in insects. We report unique features of the N. vitripennis OBPs, including the presence and evolutionary origin of a new subfamily of double-domain OBPs (consisting of two concatenated OBP domains), the loss of conserved cysteine residues and the expression of pseudogenes. This study also demonstrates the extremely dynamic evolution of the insect OBP family: (i) the number of different OBPs can vary greatly between species; (ii) the sequences are highly diverse, sometimes as a result of positive selection pressure with even the canonical cysteines being lost; (iii) new lineage specific domain arrangements can arise, such as the double domain OBP subfamily of wasps and mosquitoes.Rothamsted Research receives grant-aided support from the BBSRC of the UK. The authors thank Prof. David M. Shuker, University of Edinburgh, UK, who provided us with N. vitripennis. FGV was supported by a predoctoral fellowship SFRH/BD/22360/2005 from the ā€˜FundacĀøaĖœo para a CieĖ†ncia e a TecnologıĀ“aā€™ (Portugal). This work was funded by grants BFU2007-62927 and BFU2010-15484 from the ā€˜DireccioĀ“n General de InvestigacioĀ“n CientıĀ“fica y TeĀ“cnicaā€™ (Spain) to JR. JR was partially supported by ICREA Academia (Generalitat de Catalunya). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The Vector Population Monitoring Tool (VPMT): High-Throughput DNA-Based Diagnostics for the Monitoring of Mosquito Vector Populations

    Get PDF
    Regular monitoring of mosquito vector populations is an integral component of most vector control programmes. Contemporary data on mosquito species composition, infection status, and resistance to insecticides are a prerequisite for effective intervention. For this purpose we, with funding from the Innovative Vector Control Consortium (IVCC), have developed a suite of high-throughput assays based on a single ā€œclosed-tubeā€ platform that collectively comprise the ā€œVector Population Monitoring Toolā€ (VPMT). The VPMT can be used to screen mosquito disease vector populations for a number of traits including Anopheles gambiae s.l. and Anopheles funestus species identification, detection of infection with Plasmodium parasites, and identification of insecticide resistance mechanisms. In this paper we focus on the Anopheles-specific assays that comprise the VPMT and include details of a new assay for resistance todieldrin Rdl detection. The application of these tools, general and specific guidelines on their use based on field testing in Africa, and plans for further development are discussed

    Development of multiplex real-time PCR assays for identification of members of the Anopheles funestus species group

    Get PDF
    BACKGROUND: The malaria vector and non-vector species of the Anopheles funestus group are morphologically very similar and accurate identification is required as part of effective control strategies. In the past, this has relied on morphological and cytogenetic methods but these have been largely superseded by a robust allele-specific PCR (AS-PCR). One disadvantage of AS-PCR is the requirement for post-PCR processing by gel electrophoresis of PCR products. In this study, three new high-throughput 'closed-tube' assays were developed and compared with the previously described AS-PCR technique. METHODS: Protocols for three fluorescence-based assays based on Melt Curve Analysis (MCA), High Resolution Melt (HRM) and TaqMan SNP genotyping were developed to detect and discriminate Anopheles parensis, Anopheles leesoni, Anopheles vaneedeni, Anopheles rivulorum and An. funestus s.s. The sensitivity and specificity of these assays were compared with the widely used AS-PCR in a blind trial using DNA extracted from wild-caught mosquitoes. RESULTS: The TaqMan assay proved to be the most sensitive and specific of the three new assays. The MCA and HRM assays initially gave promising results, but were more sensitive to both DNA quality and quantity and consequently showed a higher rate of incorrect identifications. CONCLUSION: The TaqMan assay proved to be the most robust of the three protocols tested in this study. This assay very effectively identified all five members of the An. funestus group using fluorescently-labeled probes with distinct emission and excitation spectra allowing their independent detection in a single reaction. This method is at least as sensitive and specific as the gold standard AS-PCR approach and because it has no requirement for post-PCR processing is simpler and more rapid to run. The one disadvantage of the TaqMan assay is the cost of this assay, both in terms of initial capital outlay and running cost per sample, which is higher than AS-PCR. However, the cost of both the real-time PCR machine and fluorescently labelled probes required is falling and in the future the cost of this assay is likely to become closer to that of standard PCR

    A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators

    Get PDF
    A summary is provided of recent advances in the natural science evidence base concerning the effects of neonicotinoid insecticides on insect pollinators in a format (a ā€˜restatementā€™) intended to be accessible to informed but not expert policymakers and stakeholders. Important new studies have been published since our recent review of this field (Godfray et al. 2014 Proc. R. Soc. B 281,20140558. (doi:10.1098/rspb.2014.0558)) and the subject continues to be an area of very active research and high policy relevance

    An evolutionarily-unique heterodimeric voltage-gated cation channel found in aphids

    Get PDF
    We describe the identification in aphids of a unique heterodimeric voltage-gated sodium channel which has an atypical ion selectivity filter and, unusually for insect channels, is highly insensitive to tetrodotoxin. We demonstrate that this channel has most likely arisen by adaptation (gene fission or duplication) of an invertebrate ancestral mono(hetero)meric channel. This is the only identifiable voltage-gated sodium channel homologue in the aphid genome(s), and the channel's novel selectivity filter motif (DENS instead of the usual DEKA found in other eukaryotes) may result in a loss of sodium selectivity, as indicated experimentally in mutagenised Drosophila channels

    Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice

    Get PDF
    Gastrointestinal (GI) parasites, hookworms in particular, have evolved to cause minimal harm to their hosts, allowing them to establish chronic infections. This is mediated by creating an immunoregulatory environment. Indeed, hookworms are such potent sup-pressors of inflammation that they have been used in clinical trials to treat inflammatory bowel diseases (IBD) and celiac disease. Since the recent description of helminths (worms) secreting extracellular vesicles (EVs), exosome-like EVs from different helminths have been characterized and their salient roles in parasite-host interactions have been highlighted. Here, we analyze EVs from the rodent parasite Nippostrongylus brasiliensis, which has been used as a model for human hookworm infection. N. brasiliensis EVs (Nb-EVs) are actively internalized by mouse gut organoids, indicating a role in driving parasitism. We used proteomics and RNA-Seq to profile the molecular composition of Nb-EVs. We identified 81 proteins, including proteins frequently present in exosomes (like tetraspanin, enolase, 14-3-3 protein, and heat shock proteins), and 27 sperm-coating protein-like extracellular proteins. RNA-Seq analysis revealed 52 miRNA species, many of which putatively map to mouse genes involved in regulation of inflammation. To determine whether GI nematode EVs had immunomodulatory properties, we assessed their potential to suppress GI inflammation in a mouse model of inducible chemical colitis. EVs from N. brasiliensis but not those from the whipworm Trichuris muris or control vesicles from grapes protected against colitic inflammation in the gut of mice that received a single intraperitoneal injection of EVs. Key cytokines associated with colitic pathology (IL-6, IL-1 beta, IFN gamma, and IL-17a) were significantly suppressed in colon tissues from EV-treated mice. By contrast, high levels of the anti-inflammatory cytokine IL-10 were detected in Nb-EV-treated mice. Proteins and miRNAs contained within helminth EVs hold great potential application in development of drugs to treat helminth infections as well as chronic non-infectious diseases resulting from a dysregulated immune system, such as IBD

    Insecticide resistance mediated 1 by an exon skipping event

    Get PDF
    Many genes increase coding capacity by alternate exon usage. The gene encoding the insect nicotinic acetylcholine receptor (nAChR) a6 subunit, target of the bio-insecticide spinosad, is one example of this and expands protein diversity via alternative splicing of mutually exclusive exons. Here, we show that spinosad resistance in the tomato leaf miner, Tuta absoluta is associated with aberrant regulation of splicing of Taa6 resulting in a novel form of insecticide resistance mediated by exon skipping. Sequencing of the a6 subunit cDNA from spinosad selected and unselected strains of T. absoluta revealed all Taa6 transcripts of the selected strain were devoid of exon 3, with comparison of genomic DNA and mRNA revealing this is a result of exon skipping. Exon skipping cosegregated with spinosad resistance in survival bioassays, and functional characterization of this alteration using modiļ¬ed human nAChR a7, a model of insect a6, demonstrated that exon 3 is essential for receptor function and hence spinosad sensitivity. DNA and RNA sequencing analyses suggested that exon skipping did not result from genetic alterations in intronic or exonic cis-regulatory elements, but rather was associated with a single epigenetic modiļ¬cation downstream of exon 3a, and quantitative changes in the expression of trans-acting proteins that have known roles in the regulation of alternative splicing. Our results demonstrate that the intrinsic capacity of the a6 gene to generate transcript diversity via alternative splicing can be readily exploited during the evolution of resistance and identiļ¬es exon skipping as a molecular alteration conferring insecticide resistance
    • ā€¦
    corecore