14 research outputs found

    Statin therapy is associated with improved survival in patients with ventricular tachyarrhythmias

    Get PDF
    Objectives: The study sought to assess the impact of statin therapy on survival in patients presenting with ventricular tachyarrhythmias. Background: Data regarding the outcome of patients with statin therapy presenting with ventricular tachyarrhythmias is limited. Methods: A large retrospective registry was used including all consecutive patients presenting with ventricular tachycardia (VT) or fibrillation (VF) from 2002 to 2016. Patients with statin were compared to patients without statin therapy (non-statin). The primary prognostic endpoint was long-term all-cause death at 3 years. Uni- and multivariable Cox regression analyses were applied in propensity-score matched cohorts. Results: A total of 424 matched patients was included. The rates of VT and VF were similar in both groups (VT: statin 71% vs. non-statin 68%; VF: statin 29% vs. 32%; p = 0.460). Statin therapy was associated with lower all-cause mortality at long-term follow-up (mortality rates 16% versus 33%; log rank, p = 0.001; HR = 0.438; 95% CI 0.290–0.663; p = 0.001), irrespective of the underlying type of ventricular tachyarrhythmia (VT/VF), left ventricular ejection fraction (LVEF) > 35%, presence of an activated implantable cardioverter defibrillator (ICD), cardiogenic shock or cardiopulmonary resuscitation (CPR). Conclusion: Statin therapy is independently associated with lower long-term mortality in patients presenting with ventricular tachyarrhythmias on admission. Trial registration: Clinicaltrials.gov, NCT02982473 , 11/29/2016, Retrospectively registered

    Minimizing Errors in RT-PCR Detection and Quantification of SARS-CoV-2 RNA for Wastewater Surveillance

    Get PDF
    Wastewater surveillance for pathogens using the reverse transcription-polymerase chain reaction (RT-PCR) is an effective, resource-efficient tool for gathering additional community-level public health information, including the incidence and/or prevalence and trends of coronavirus disease-19 (COVID-19). Surveillance of SARS-CoV-2 in wastewater may provide an early-warning signal of COVID-19 infections in a community. The capacity of the world’s environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is rapidly increasing. However, there are no standardized protocols nor harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can lead to false-positive and -negative errors in the surveillance of SARS-CoV-2, culminating in recommendations and strategies that can be implemented to identify and mitigate these errors. Recommendations include, stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, amplification inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly during a low incidence of SARS-CoV-2 in wastewater. Corrective and confirmatory actions must be in place for inconclusive and/or potentially significant results (e.g., initial onset or reemergence of COVID-19 in a community). It will also be prudent to perform inter-laboratory comparisons to ensure results are reliable and interpretable for ongoing and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance was demonstrated during this global crisis. In the future, wastewater will play an important role in the surveillance of a range of other communicable diseases.Highlights: Harmonized QA/QC procedures for SARS-CoV-2 wastewater surveillance are lacking; Wastewater analysis protocols are not optimized for trace analysis of viruses; False-positive and -negative errors have consequences for public health responses; Inter-laboratory studies utilizing standardized reference materials and protocols are needed.info:eu-repo/semantics/publishedVersio

    Chronic kidney disease impairs prognosis in electrical storm

    No full text
    Background!#!The study sought to assess the prognostic impact of chronic kidney disease (CKD) in patients with electrical storm (ES). ES represents a life-threatening heart rhythm disorder. In particular, CKD patients are at risk of suffering from ES. However, data regarding the prognostic impact of CKD on long-term mortality in ES patients is limited.!##!Methods!#!All consecutive ES patients with an implantable cardioverter-defibrillator (ICD) were included retrospectively from 2002 to 2016. Patients with CKD (MDRD-GFR < 60 ml/min/1.73 m!##!Results!#!A total of 70 consecutive ES patients were included. CKD was present in 43% of ES patients with a median glomerular filtration rate (GFR) of 43.3 ml/min/1.73 m!##!Conclusions!#!In patients with ES, the presence of CKD was associated with increased long-term mortality and MACE

    Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance

    Get PDF
    Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in wastewater can potentially provide an early warning signal of COVID-19 infections in a community. The capacity of the world's environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA in wastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly when the incidence of SARS-CoV-2 in wastewater is low. Corrective and confirmatory actions must be in place for inconclusive results or results diverging from current trends (e.g., initial onset or reemergence of COVID-19 in a community). It is also prudent to perform interlaboratory comparisons to ensure results' reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases. Crown Copyright (C) 2021 Published by Elsevier B.V.Peer reviewe

    Plato argénteo nº 38.215 . Cabeza antropomorfa diademada - ABE0162_AR

    Get PDF
    Proyectos del Plan Nacional I+D+I con referencias PB94-0129, PB97-1132, BHA 2002-00138, HUM 2006-06250/HISTProyectos de la CAM con referencias 06/0020/1997, 06/0094/1998, 06/0090/2000, 06/0043/2001Programa Consolider-Ingenio 2010 con sigla CSD2007-00058NoMuseo Arqueológico Nacional (Madrid)AbengibrePlato argénteo nº 38.215 . Cabeza antropomorfa diademad
    corecore