61 research outputs found

    Spatial Patterns, Mechanisms, and Predictability of Barents Sea Ice Change

    Get PDF
    Recent Arctic winter sea ice loss has been most pronounced in the Barents Sea. Here we explore the spatial structure of Barents Sea ice change as observed over the last 40 years. The dominant mode of winter sea ice concentration interannual variability corresponds to areal change (explains 43% of spatial variance) and has a center of action in the northeastern Barents Sea where the temperate Atlantic inflow meets the wintertime sea ice. Sea ice area import and northerly wind also contribute to this “areal-change mode”; the area increases with more ice import and stronger winds from the north. The remaining 57% variance in sea ice, individually and combined, redistributes the sea ice without changing the total area. The two leading redistribution modes are a dipole of increase in sea ice concentration south of Svalbard with decrease southwest of Novaya Zemlya, and a tripole of increase in the central Barents Sea with decrease east of Svalbard and in the southeastern Barents Sea. Redistribution is mainly contributed by anomalous wind and sea ice area import. Basic predictability (i.e., the lagged response to observed drivers) is predominantly associated with the areal-change mode as influenced by temperature of the Atlantic inflow and sea ice import from the Arctic.publishedVersio

    Import of Atlantic Water and sea ice controls the ocean environment in the northern Barents Sea

    Get PDF
    The northern Barents Sea is a cold, seasonally ice-covered Arctic shelf sea region that has experienced major warming and sea ice loss in recent decades. Here, a 2-year observational record from two ocean moorings provides new knowledge about the seasonal hydrographic variability in the region and about the ocean exchange across its northern margin. The combined records of temperature, salinity, and currents show the advection of warmer and saltier waters of Atlantic origin into the Barents Sea from the north. The source of these warmer water masses is the Atlantic Water boundary current that flows along the continental slope north of Svalbard. Time-varying southward inflow through cross-shelf troughs was the main driver of the seasonal cycle in ocean temperature at the moorings. Inflows were intensified in autumn and early winter, in some cases occurring below the sea ice cover and halocline water. On shorter timescales, subtidal current variability was correlated with the large-scale meridional atmospheric pressure gradient, suggesting wind-driven modulation of the inflow. The mooring records also show that import of sea ice into the Barents Sea has a lasting impact on the upper ocean, where salinity and stratification are strongly affected by the amount of sea ice that has melted in the area. A fresh layer separated the ocean surface from the warm mid-depth waters following large sea ice imports in 2019, whereas diluted Atlantic Water was found close to the surface during episodes in autumn 2018 following a long ice-free period. Thus, the advective imports of ocean water and sea ice from surrounding areas are both key drivers of ocean variability in the region.publishedVersio

    Poleward shifts in marine fisheries under Arctic warming

    Get PDF
    As global warming makes the Arctic Ocean more accessible, concerns have been raised about the environmental consequences of a possible expansion of commercial fisheries into pristine marine ecosystems. Using a recently released global dataset, we quantify for the first time how fishing activities are responding to diminishing sea ice and a warmer Arctic Ocean. We show that trawling dominates Arctic fisheries and that this activity penetrates rapidly into Arctic shelf areas previously protected by extensive ice-cover as a response to interannual sea ice loss. We model the development of trawling activity under a climate change scenario and use the model to identify areas with high risk of increased trawling activity and estimate the amount of trawling avoided in recently established fishery protection zones. Stronger responsibility must be undertaken by Arctic coastal states to regulate increased fishing pressure and protect vulnerable Arctic shelf ecosystems.publishedVersio

    Increased functional diversity warns of ecological transition in the Arctic

    Get PDF
    As temperatures rise, motile species start to redistribute to more suitable areas, potentially affecting the persistence of several resident species and altering biodiversity and ecosystem functions. In the Barents Sea, a hotspot for global warming, marine fish from boreal regions have been increasingly found in the more exclusive Arctic region. Here, we show that this shift in species distribution is increasing species richness and evenness, and even more so, the functional diversity of the Arctic. Higher diversity is often interpreted as being positive for ecosystem health and is a target for conservation. However, the increasing trend observed here may be transitory as the traits involved threaten Arctic species via predation and competition. If the pressure from global warming continues to rise, the ensuing loss of Arctic species will result in a reduction in functional diversity.publishedVersio

    SeaDataNet regional climatologies: an overview

    Get PDF
    In the frame of the SeaDataNet project, several regional climatologies for the temperature and salinity are being developed by different groups. The data used for these climatologies are distributed by the 40 SeaDataNet data centers. Such climatologies have several uses: 1. the detection of outliers by comparison of the in situ data with the climatological fields, 2. the the optimization of locations of new observations, 3. the initialization of numerical hydrodynamic models. 4. definition of a reference state to identify anomalies and to detect long-term climatic trends Diva (Data Interpolating Variational Analysis) software is adapted to each region by taking into account the geometrical characteristics (coastlines, bathymetry) and the distribution of data (correlation length, signal-to-noise ratio, reference field). The regional climatologies treated in this work are: - JRA5: North Atlantic - JRA6: Mediterranean Sea - JRA7: Baltic Sea - JRA8: North Sea, Arctic Sea Several examples of gridded fields are presented in this work. The validation of the different products is carried out through a comparison with the last release of the widespread World Ocean Atlas 2005

    From Winter to Late Summer in the Northwestern Barents Sea Shelf: Impacts of Seasonal Progression of Sea Ice and Upper Ocean on Nutrient and Phytoplankton Dynamics

    Get PDF
    Strong seasonality is a key feature of high-latitude systems like the Barents Sea. While the interannual variability and long-term changes of the Barents Sea are well-documented, the seasonal progression of the physical and biological systems is less known, mainly due to poor accessibility of the seasonally ice-covered area in winter and spring. Here, we use an extensive set of physical and biological in situ observations from four scientific expeditions covering the seasonal progression from late winter to late summer 2021 in the northwestern Barents Sea, from fully ice-covered to ice-free conditions. We found that sea ice meltwater and the timing of ice-free conditions in summer shape the environment, controlling heat accumulation, light and nutrient availability, and biological activity vertically, seasonally, and meridionally. In March and May, the ocean north of the Polar Front was ice-covered and featured a deep mixed layer. Chlorophyll-a concentrations increased from March to May along with greater euphotic depth, indicating the beginning of the spring bloom despite the absence of surface layer stratification. By July and in September, sea ice meltwater created a shallow low-density surface layer that strengthened stratification. In open water, chlorophyll-a maxima were found at the base of this layer as surface nutrients were depleted, while in the presence of ice, maxima were closer to the surface. Solar heating and the thickness of the surface layer increased with the number of ice-free days. The summer data showed a prime example of an Arctic-like space-for-time seasonal variability in the key physical and biological patterns, with the summer situation progressing northwards following sea ice retreat. The amount of sea ice melt (local or imported) has a strong control on the conditions in the northwestern Barents Sea, and the conditions in late 2021 resembled pre-2010 Arctic-like conditions with high freshwater content and lower ocean heat content.acceptedVersio

    Weakening of cold halocline layer exposes sea ice to oceanic heat in the eastern Arctic Ocean

    Get PDF
    A 15-yr duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (~150–900 m) warm Atlantic Water (AW) to the surface mixed layer and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017–18 showing AW at only 80 m depth, just below the wintertime surface mixed layer, the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3–4 W m−2 in 2007–08 to >10 W m−2 in 2016–18. This seasonal AW heat loss in the eastern EB is equivalent to a more than a twofold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback
    corecore