32 research outputs found

    World Health Organization critical priority Escherichia coli clone ST648 in magnificent frigatebird (Fregata magnificens) of an uninhabited insular environment

    Get PDF
    Antimicrobial resistance is an ancient natural phenomenon increasingly pressured by anthropogenic activities. Escherichia coli has been used as markers of environmental contamination and human-related activity. Seabirds may be bioindicators of clinically relevant bacterial pathogens and their antimicrobial resistance genes, including extended-spectrum-beta-lactamase (ESBL) and/or plasmid-encoded AmpC (pAmpC), in anthropized and remote areas. We evaluated cloacal swabs of 20 wild magnificent frigatebirds (Fregata magnificens) of the Alcatrazes Archipelago, the biggest breeding colony of magnificent frigatebirds in the southern Atlantic and a natural protected area with no history of human occupation, located in the anthropized southeastern Brazilian coast. We characterized a highly virulent multidrug-resistant ST648 (O153:H9) pandemic clone, harboring bla, bla, qnrB, tetB, sul1, sul2, aadA1, aac(3)-VIa and mdfA, and virulence genes characteristic of avian pathogenic (APEC) (hlyF, iroN, iss, iutA, and ompT) and other extraintestinal E. coli (ExPEC) (chuA, kpsMII, and papC). To our knowledge, this is the first report of ST648 E. coli co-producing ESBL and pAmpC in wild birds inhabiting insular environments. We suggest this potentially zoonotic and pathogenic lineage was likely acquired through indirect anthropogenic contamination of the marine environment, ingestion of contaminated seafood, or by intra and/or interspecific contact. Our findings reinforce the role of wild birds as anthropization sentinels in insular environments and the importance of wildlife surveillance studies on pathogens of critical priority classified by the World Health Organization

    Global priority multidrug-resistant pathogens do not resist photodynamic therapy.

    Get PDF
    Microbial drug-resistance demands immediate implementation of novel therapeutic strategies. Antimicrobial photodynamic therapy (aPDT) combines the administration of a photosensitizer (PS) compound with low-irradiance light to induce photochemical reactions that yield reactive oxygen species (ROS). Since ROS react with nearly all biomolecules, aPDT offers a powerful multitarget method to avoid selection of drug-resistant strains. In this study, we assayed photodynamic inactivation under a standardized method, combining methylene blue (MB) as PS and red light, against global priority pathogens. The species tested include Acinetobacter baumannii, Klebsiella aerogenes, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus, Candida albicans and Cryptococcus neoformans. Our strain collection presents resistance to all tested antimicrobials (>50). All drug-resistant strains were compared to their drug-sensitive counterparts. Regardless of resistance phenotype, MB-aPDT presented species-specific dose-response kinetics. More than 5log10 reduction was observed within less than 75 s of illumination for A. baumannii, E. coli, E. faecium, E. faecalis and S. aureus and within less than 7 min for K. aerogenes, K. pneumoniae, P. aeruginosa, C. albicans and C. neoformans. No signs of correlations in between drug-resistance profiles and aPDT sensitivity were observed. Therefore, MB-aPDT can provide effective therapeutic protocols for a very broad spectrum of pathogens. Hence, we believe that this study represents a very important step to bring aPDT closer to implementation into mainstream medical practices

    WHO Critical Priority Escherichia coli as One Health Challenge for a Post-Pandemic Scenario: Genomic Surveillance and Analysis of Current Trends in Brazil.

    Get PDF
    The dissemination of carbapenem-resistant and third generation cephalosporin-resistant pathogens is a critical issue that is no longer restricted to hospital settings. The rapid spread of critical priority pathogens in Brazil is notably worrying, considering its continental dimension, the diversity of international trade, livestock production, and human travel. We conducted a nationwide genomic investigation under a One Health perspective that included Escherichia coli strains isolated from humans and nonhuman sources, over 45 years (1974-2019). One hundred sixty-seven genomes were analyzed extracting clinically relevant information (i.e., resistome, virulome, mobilome, sequence types [STs], and phylogenomic). The endemic status of extended-spectrum β-lactamase (ESBL)-positive strains carrying a wide diversity of variants, and the growing number of colistin-resistant isolates carrying -type genes was associated with the successful expansion of international ST10, ST38, ST115, ST131, ST354, ST410, ST648, ST517, and ST711 clones; phylogenetically related and shared between human and nonhuman hosts, and polluted aquatic environments. Otherwise, carbapenem-resistant ST48, ST90, ST155, ST167, ST224, ST349, ST457, ST648, ST707, ST744, ST774, and ST2509 clones from human host harbored and genes. A broad resistome to other clinically relevant antibiotics, hazardous heavy metals, disinfectants, and pesticides was further predicted. Wide virulome associated with invasion/adherence, exotoxin and siderophore production was related to phylogroup B2. The convergence of wide resistome and virulome has contributed to the persistence and rapid spread of international high-risk clones of critical priority E. coli at the human-animal-environmental interface, which must be considered a One Health challenge for a post-pandemic scenario. A One Health approach for antimicrobial resistance must integrate whole-genome sequencing surveillance data of critical priority pathogens from human, animal and environmental sources to track hot spots and routes of transmission and developing effective prevention and control strategies. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we present genomic data of WHO critical priority carbapenemase-resistant, ESBL-producing, and/or colistin-resistant Escherichia coli strains isolated from humans and nonhuman sources in Brazil, a country with continental proportions and high levels of antimicrobial resistance. The present study provided evidence of epidemiological and clinical interest, highlighting that the convergence of wide virulome and resistome has contributed to the persistence and rapid spread of international high-risk clones of E. coli at the human-animal-environmental interface, which must be considered a One Health threat that requires coordinated actions to reduce its incidence in humans and nonhuman hosts

    Multidrug-resistant Pseudomonas Aeruginosa: An Endemic Problem In Brazil [pseudomonas Aeruginosa Multirresistente: Um Problema Endêmico No Brasil]

    No full text
    Global reports have documented the endemicity of multidrug-resistant (MDR) Pseudomonas aeruginosa associated with high levels of morbidity/mortality. In Brazil, outbreaks of MDR P. aeruginosa have been related to clonal dissemination. Currently, therapeutic options for the treatment of these infections are restricted to carbapenemic antibiotics (i.e., imipenem [IPM]). Thus, carbapenem resistance is a public health issue, since carbapenems are considered the last resort to nosocomial infections caused by MDR Gram-negative bacteria. In Brazil, the main mechanisms associated with MDR P. aeruginosa phenotypes are metallo-betalactamase (MBL) production (SPM-1 enzyme), presence of 16S rRNA methylase RmtD, loss of OprD porin, and overexpression of efflux pumps, which may explain the high level of carbapenem and aminoglycoside resistance. Accordingly, the emergence and dissemination of MDR strains is worrisome. Finally, based on national reports published by different groups of investigators, it is deduced that the convergence of multiple mechanisms of P. aeruginosa resistance has played a major role in the selection of endemic MDR clones widespread in Brazil.474409420Aedekerk, S., Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium (2002) Microbiology, 148 (8), pp. 2371-2381Aeschlimann, J.R., The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria insights from the society of infectious diseases pharmacists (2003) Pharmacotherapy, 23 (7), pp. 916-924. , DOI 10.1592/phco.23.7.916.32722Andrade, S.S., Jones, R.N., Gales, A.C., Sader, H.S., Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997-2001) [2] (2003) Journal of Antimicrobial Chemotherapy, 52 (1), pp. 140-141Andrade, S.S., Picao, R.C., Campana, E.H., Nicoletti, A.G., Pignatari, A.C.C., Gales, A.C., Influence of disk preparation on detection of metallo-β-lactamase- producing isolates by the combined disk assay (2007) Journal of Clinical Microbiology, 45 (6), pp. 2058-2060. , DOI 10.1128/JCM.02467-06Arakawa, Y., Shibata, N., Shibayama, K., Kurokawa, H., Yagi, T., Fujiwara, H., Goto, M., Convenient test for screening metallo-β-lactamase-producing gram- negative bacteria by using thiol compounds (2000) Journal of Clinical Microbiology, 38 (1), pp. 40-43Blair, J., Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: An update (2009) Current Opinion in Microbiology, 12 (5), pp. 512-519Butaye, P., Cloeckaert, A., Schwarz, S., Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria (2003) International Journal of Antimicrobial Agents, 22 (3), pp. 205-210. , DOI 10.1016/S0924-8579(03)00202-4Castanheira, M., Toleman, M.A., Jones, R.N., Schmidt, F.J., Walsh, T.R., Molecular characterization of a β-lactamase gene, bla GIM.1, encoding a new subclass of metallo-β-lactamase (2004) Antimicrobial Agents and Chemotherapy, 48 (12), pp. 4654-4661. , DOI 10.1128/AAC.48.12.4654-4661.2004Davies, J., Wright, G.D., Bacterial resistance to aminoglycoside antibiotics (1997) Trends in Microbiology, 5 (6), pp. 234-240. , DOI 10.1016/S0966-842X(97)01033-0De Freitas, A.L., Barth, A.L., Antibiotic resistance and molecular typing of Pseudomonas aeruginosa: Focus on imipenem (2002) Braz J Infect Dis, 6 (1), pp. 1-7Denny, B.J., Novotny, L., West, P.W.J., Blesova, M., Zamocka, J., Antimicrobial activity of a series of 1-alkyl-2-(4-pyridyl)pyridinium bromides against gram-positive and gram-negative bacteria (2005) Medical Principles and Practice, 14 (6), pp. 377-381. , DOI 10.1159/000088108Doi, Y., De Oliveira Garcia, D., Adams, J., Paterson, D.L., Coproduction of novel 16S rRNA methylase RmtD and metallo-β- lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil (2007) Antimicrobial Agents and Chemotherapy, 51 (3), pp. 852-856. , DOI 10.1128/AAC.01345-06Doi, Y., Adams-Haduch, J.M., Paterson, D.L., Genetic environment of 16S rRNA methylase gene rmtD (2008) Antimicrobial Agents and Chemotherapy, 52 (6), pp. 2270-2272. , DOI 10.1128/AAC.00037-08Doi, Y., Ghilardi, A.C.R., Adams, J., De Oliveira Garcia, D., Paterson, D.L., High prevalence of metallo-β-lactamase and 16S rRNA methylase coproduction among imipenem-resistant Pseudomonas aeruginosa isolates in Brazil (2007) Antimicrobial Agents and Chemotherapy, 51 (9), pp. 3388-3390. , DOI 10.1128/AAC.00443-07Doi, Y., Yokoyama, K., Yamane, K., Wachino, J.-I., Shibata, N., Yagi, T., Shibayama, K., Arakawa, Y., Plasmid-Mediated 16S rRNA Methylase in Serratia marcescens Conferring High-Level Resistance to Aminoglycosides (2004) Antimicrobial Agents and Chemotherapy, 48 (2), pp. 491-496. , DOI 10.1128/AAC.48.2.491-496.2004Doi, Y., Arakawa, Y., 16S ribosomal RNA methylation: Emerging resistance mechanism against aminoglycosides (2007) Clinical Infectious Diseases, 45 (1), pp. 88-94. , DOI 10.1086/518605El Salabi, A., (2009) Novel Subclase of a Group B1 Metallobeta-lactamase, TMB-1, in Clinical and Non-clinical Gram-negative Bacteria from Libya, , 49 th Interscience Conference in Antimicrobial Agentes and Chemotherapy ICAAC. San Francisco, CA, USA, n. C1-1365Evans, J.C., Segal, H., A novel insertion sequence, ISPa26, in oprD of Pseudomonas aeruginosa is associated with carbapenem resistance [2] (2007) Antimicrobial Agents and Chemotherapy, 51 (10), pp. 3776-3777. , DOI 10.1128/AAC.00837-07Fehlberg, L.C.C., (2010) Estudo Comparativo dos Mecanismos de Resistência Aos Beta-lactâmicos em Amostras Clínicas de Pseudomonas Aeruginosa Isoladas de Infecção de Corrente Sanguínea No Brasil e Nos Estados Unidos da América, , Dissertação Mestrado - Escola Paulista de Medicina, Universidade Federal de São PauloFigueiredo-Mendes, C.M., Sinto, S., Mello-Sampaio, J.L., Cardoso-Leao, S., Paz Oplustil, C., Turner, P., Veiga-Kiffer, C.R., Ykko, S., Pseudomonas aeruginosa clonal dissemination in Brazilian intensive care units (2005) Enfermedades Infecciosas y Microbiologia Clinica, 23 (7), pp. 402-405. , DOI 10.1157/13078798Filho, L.S., Determinação da produção de metalo-B-lactamases em amostras de P. aeruginosa isoladas em João Pessoa, Paraíba (2002) J Bras Patol Med Lab, 38 (4), pp. 291-296Fukuda, H., NfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa (1995) Antimicrobial Agents and Chemotherapy, 39 (3), pp. 790-792Fung-Tomc, J.C., Activity of carbapenem BMS-181139 against Pseudomonas aeruginosa is not dependent on porin protein D2 (1995) Antimicrob Agents Chemother, 39 (2), pp. 386-393Furtado, G.H.C., D'Azevedo, P.A., Santos, A.F., Gales, A.C., Pignatari, A.C.C., Medeiros, E.A.S., Intravenous polymyxin B for the treatment of nosocomial pneumonia caused by multidrug-resistant Pseudomonas aeruginosa (2007) International Journal of Antimicrobial Agents, 30 (4), pp. 315-319. , DOI 10.1016/j.ijantimicag.2007.05.017, PII S0924857907002622Gales, A.C., Carbapenem-resistant Pseudomonas aeruginosa outbreak in an intensive care unit of a teaching hospital (2004) Braz J Infect Dis, 8 (4), pp. 267-271Gales, A.C., Menezes, L.C., Silbert, S., Sader, H.S., Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β- lactamase (2003) Journal of Antimicrobial Chemotherapy, 52 (4), pp. 699-702. , DOI 10.1093/jac/dkg416Galimand, M., Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation (2005) Antimicrob Agents Chemother, 47 (8), pp. 2565-2571Gonçalves, D.C., Detection of metallo-betalactamase in Pseudomonas aeruginosa isolated from hospitalized patients in Goiânia, state of Goiás (2009) Rev Soc Bras Med, 42 (4), pp. 411-414Huang, H., Hancock, R.E.W., The role of specific surface loop regions in determining the function of the imipenem-specific pore protein OprD of Pseudomonas aeruginosa (1996) Journal of Bacteriology, 178 (11), pp. 3085-3090Kaatz, G.W., Inhibition of bacterial efflux pumps: A new strategy to combat increasing antimicrobial agent resistance (2002) Expert Opinion on Emerging Drugs, 7 (2), pp. 223-233. , DOI 10.1517/14728214.7.2.223Khan, T.Z., Early pulmonary inflammation in infants with cystic fibrosis (1995) Am J Respir Crit Care Med, 151 (4), pp. 1075-1082Kiffer, C., Hsiung, A., Oplustil, C., Sampaio, J., Sakagami, E., Turner, P., Mendes, C., Antimicrobial susceptibility of gram-negative bacteria in Brazilian hospitals: The MYSTIC Program Brazil 2003 (2005) Brazilian Journal of Infectious Diseases, 9 (3), pp. 216-224. , http://www.scielo.br/pdf/bjid/v9n3/a04v9n3.pdfKohler, T., Michea-Hamzehpour, M., Epp, S.F., Pechere, J.-C., Carbapenem activities against Pseudomonas aeruginosa: Respective contributions of OprD and efflux systems (1999) Antimicrobial Agents and Chemotherapy, 43 (2), pp. 424-427Kohler, T., Epp, S.F., Curty, L.K., Pechere, J.-C., Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa (1999) Journal of Bacteriology, 181 (20), pp. 6300-6305Kohler, T., Michea-Hamzehpour, M., Plesiat, P., Kahr, A.-L., Pechere, J.-C., Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa (1997) Antimicrobial Agents and Chemotherapy, 41 (11), pp. 2540-2543Kokis, V.M., Moreira, B.M., Pellegrino, F.L.P.C., Silva, M.G., Long, J.B., Bastos, C.C.R., Santos, K.R.N., Identification of an imipenem-resistant Pseudomonas aeruginosa clone among patients in a hospital in Rio de Janeiro (2005) Journal of Hospital Infection, 60 (1), pp. 19-26. , DOI 10.1016/j.jhin.2004.11.019, PII S0195670105000022Kriengkauykiat, J., Porter, E., Lomovskaya, O., Wong-Beringer, A., Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa (2005) Antimicrobial Agents and Chemotherapy, 49 (2), pp. 565-570. , DOI 10.1128/AAC.49.2.565-570.2005Lauretti, L., Riccio, M.L., Mazzariol, A., Cornaglia, G., Amicosante, G., Fontana, R., Rossolini, G.M., Cloning and characterization of bla(VIM), a new integron-borne metallo- β-lactamase gene from a Pseudomonas aeruginosa clinical isolate (1999) Antimicrobial Agents and Chemotherapy, 43 (7), pp. 1584-1590Lee, K., Lim, Y.S., Yong, D., Yum, J.H., Chong, Y., Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. (2003) Journal of Clinical Microbiology, 41 (10), pp. 4623-4629. , DOI 10.1128/JCM.41.10.4623-4629.2003Lee, K., Yum, J.H., Yong, D., Lee, H.M., Kim, H.D., Docquier, J.-D., Rossolini, G.M., Chong, Y., Novel acquired metallo-β-lactamase gene, bla SIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea (2005) Antimicrobial Agents and Chemotherapy, 49 (11), pp. 4485-4491. , DOI 10.1128/AAC.49.11.4485-4491.2005Levin, A.S., Barone, A.A., Penco, J., Santos, M.V., Marinho, I.S., Arruda, E.A.G., Manrique, E.I., Costa, S.F., Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii (1999) Clinical Infectious Diseases, 28 (5), pp. 1008-1011Li, X.-Z., Poole, K., Nikaido, H., Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes (2003) Antimicrobial Agents and Chemotherapy, 47 (1), pp. 27-33. , DOI 10.1128/AAC.47.1.27-33.2003Li, X.Z., Zhang, L., Poole, K., Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa (2000) Journal of Antimicrobial Chemotherapy, 45 (4), pp. 433-436Li, X.-Z., Livermore, D.M., Nikaido, H., Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: Resistance to tetracycline, chloramphenicol, and norfloxacin (1994) Antimicrobial Agents and Chemotherapy, 38 (8), pp. 1732-1741Li, X., Nikaido, H., Efflux-mediated drug resistance in bacteria an update (2009) Drugs, 69 (12), pp. 1555-1623Li, Y., Mima, T., Komori, Y., Morita, Y., Kuroda, T., Mizushima, T., Tsuchiya, T., A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa (2003) Journal of Antimicrobial Chemotherapy, 52 (4), pp. 572-575. , DOI 10.1093/jac/dkg390Lincopan, N., Balanoposthitis caused by Pseudomonas aeruginosa co-producing metallo-betalactamase and 16S rRNA methylase in children with hematological malignancies (2010) Int J Infect Dis, 14 (4), pp. e344-e347Lincopan, N., McCulloch, J.A., Reinert, C., Cassettari, V.C., Gales, A.C., Mamizuka, E.M., First isolation of metallo-β-lactamase-producing multiresistant Klebsiella pneumoniae from a patient in Brazil (2005) Journal of Clinical Microbiology, 43 (1), pp. 516-519. , DOI 10.1128/JCM.43.1.516-519.2005Lincopan, N., Trabulsi, L.R., Pseudomonas aeruginosa (2008) Microbiologia, 5, pp. 369-381. , TRABULSI, L. R.ALTERTHUM, F, ed. São Paulo: AtheneuLister, P.D., Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms (2009) Clin Microbiol Rev, 22 (4), pp. 582-610Livermore, D.M., Bacterial resistance: Origins, epidemiology, and impact (2003) Clinical Infectious Diseases, 36 (SUPPL. 1), pp. S11-S23. , DOI 10.1086/344654Livermore, D.M., Interplay of impermeability and chromosomal beta-lactamase activity in imipenemresistant Pseudomonas aeruginosa (1992) Antimicrob Agents Chemother, 36 (9), pp. 2046-2048Livermore, D.M., Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? (2002) Clinical Infectious Diseases, 34 (5), pp. 634-640. , DOI 10.1086/338782Livermore, D.M., Of Pseudomonas, porins, pumps and carbapenems (2001) Journal of Antimicrobial Chemotherapy, 47 (3), pp. 247-250Livermore, D.M., Woodford, N., Carbapenemases: A problem in waiting? (2000) Current Opinion in Microbiology, 3 (5), pp. 489-495Llanes, C., Hocquet, D., Vogne, C., Benali-Baitich, D., Neuwirth, C., Plesiat, P., Clinical Strains of Pseudomonas aeruginosa Overproducing MexAB-OprM and MexXY Efflux Pumps Simultaneously (2004) Antimicrobial Agents and Chemotherapy, 48 (5), pp. 1797-1802. , DOI 10.1128/AAC.48.5.1797-1802.2004Lomovskaya, O., Warren, M.S., Lee, A., Galazzo, J., Fronko, R., Lee, M., Blais, J., Lee, V.J., Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: Novel agents for combination therapy (2001) Antimicrobial Agents and Chemotherapy, 45 (1), pp. 105-116. , DOI 10.1128/AAC.45.1.105-116.2001Luzzaro, F., Endimiani, A., Docquier, J.-D., Mugnaioli, C., Bonsignori, M., Amicosante, G., Rossolini, G.M., Toniolo, A., Prevalence and characterization of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa (2004) Diagnostic Microbiology and Infectious Disease, 48 (2), pp. 131-135. , DOI 10.1016/j.diagmicrobio.2003.09.005Marchiaro, P., Mussi, M.A., Ballerini, V., Pasteran, F., Viale, A.M., Vila, A.J., Limansky, A.S., Sensitive EDTA-based microbiological assays for detection of metallo-β-lactamases in nonfermentative gram-negative bacteria (2005) Journal of Clinical Microbiology, 43 (11), pp. 5648-5652. , DOI 10.1128/JCM.43.11.5648-5652.2005Maseda, H., Yoneyama, H., Nakae, T., Assignment of the substrate-selective subunits of the MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa (2000) Antimicrobial Agents and Chemotherapy, 44 (3), pp. 658-664. , DOI 10.1128/AAC.44.3.658-664.2000Masuda, N., Sakagawa, E., Ohya, S., Gotoh, N., Tsujimoto, H., Nishino, T., Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa (2000) Antimicrobial Agents and Chemotherapy, 44 (12), pp. 3322-3327. , DOI 10.1128/AAC.44.12.3322-3327.2000Masuda, N., Ohya, S., Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa (1992) Antimicrob Agents Chemother, 36 (9), pp. 1847-1851Mendes, C., Oplustil, C., Sakagami, E., Turner, P., Kiffer, C., Antimicrobial susceptibility in intensive care units: MYSTIC Program Brazil 2002 (2005) Brazilian Journal of Infectious Diseases, 9 (1), pp. 44-51. , http://www.scielo.br/pdf/bjid/v9n1/24444.pdfMendes, R.E., Metalo-β-lactamases (2006) J Bras Patol Med Lab, 42 (2), pp. 103-113Mesaros, N., Glupczynski, Y., Avrain, L., Caceres, N.E., Tulkens, P.M., Van Bambeke, F., A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa (2007) Journal of Antimicrobial Chemotherapy, 59 (3), pp. 378-386. , DOI 10.1093/jac/dkl504Mima, T., Sekiya, H., Mizushima, T., Kuroda, T., Tsuchiya, T., Gene cloning and properties of the RND-type multidrug efflux pumps MexPQ-OpmE and MexMN-OprM from Pseudomonas aeruginosa (2005) Microbiology and Immunology, 49 (11), pp. 999-1002. , http://www.jstage.jst.go.jp/article/mandi/49/11/999/_pdfMima, T., Joshi, S., Gomez-Escalada, M., Schweizer, H.P., Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins (2007) Journal of Bacteriology, 189 (21), pp. 7600-7609. , DOI 10.1128/JB.00850-07Mine, T., Morita, Y., Kataoka, A., Mizushima, T., Tsuchiya, T., Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa (1999) Antimicrobial Agents and Chemotherapy, 43 (2), pp. 415-417Muller-Premru, M., Lejko-Zupanc, T., Epidemiological typing of imipenem-resistant Pseudomonas aeruginosa (2002) International Journal of Antimicrobial Agents, 20 (5), pp. 380-383. , DOI 10.1016/S0924-8579(02)00193-0, PII S0924857902001930Murphy, T.A., Crystal structure of Pseudomonas aeruginosa SPM-1 provides insights into variable zinc affinity of metallo-b-lactamases (2006) Journal of Molecular Biology, 357 (3), pp. 890-903Neves, P.R., (2010) Alterações da Permeabilidade e Expressão de Bombas de Efluxo em Isolados Clínicos de Pseudomonas Aeruginosa Resistente ao Imipenem, , Tese Doutoramento - Faculdade de Ciências Farmacêuticas, Universidade de São PauloNeves, P.R., Multirresistência mediada por metalo-beta-lactamases, porinas, bombas de efluxo e metilases, em isolados clínicos de Pseudomonas aeruginosa (2008) XI CONGRESSO Brasileiro de Controle de Infecção e Epidemiologia Hospitalar, 12, p. 30. , Rio de Janeiro. Braz J Infec DisNicasio, A.M., The current state of multidrugresistant Gram-negative bacilli in North America (2008) Pharmacotherapy, 28 (2), pp. 235-249Nikaido, H., Porins and specific diffusion channels in bacterial outer membranes (1994) Journal of Biological Chemistry, 269 (6), pp. 3905-3908Nikaido, H., Nikaido, K., Harayama, S., Identification and characterization of porins in Pseudomonas aeruginosa (1991) Journal of Biological Chemistry, 266 (2), pp. 770-779Ochis, M., Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids (1999) Antimicrob Agents Chemother, 43 (5), pp. 1085-1090Oh, E.J., Prevalence of metallo-β-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii in a Korean university hospital and comparison of screening methods for detecting metallo-β-lactamase (2003) J Microbiol Methods, 54 (3), pp. 411-418Oliveira, M.S., Polymyxin B and colistimethate are comparable as to efficacy and renal toxicity (2009) Diagn Microbiol Infect Dis, 65 (4), pp. 431-434Pagès, J.M., The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria (2008) Nat Rev Microbiol, 6 (12), pp. 893-903Pearson, J.P., Van Delden, C., Iglewski, B.H., Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals (1999) Journal of Bacteriology, 181 (4), pp. 1203-1210Costa Pellegrino, F.L.P., Martins Teixeira, L., Siqueira Carvalho, M.D.G., Aranha Nouer, S., Pinto De Oliveira, M., Mello Sampaio, J.L., D'Avila Freitas, A., Meurer Moreira, B., Occurrence of a multidrug-resistant Pseudomonas aeruginosa clone in different hospitals in Rio de Janeiro, Brazil (2002) Journal of Clinical Microbiology, 40 (7), pp. 2420-2424. , DOI 10.1128/JCM.40.7.2420-2424.2002Picao, R.C., Andrade, S.S., Nicoletti, A.G., Campana, E.H., Moraes, G.C., Mendes, R.E., Gales, A.C., Metallo-β-lactamase detection: Comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIM-producing isolates (2008) Journal of Clinical Microbiology, 46 (6), pp. 2028-2037. , DOI 10.1128/JCM.00818-07Piddock, L.J., Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria (2006) Clin Microbiol Rev, 19 (2), pp. 382-402Poirel, L., Collet, L., Nordmann, P., Carbapenem-hydrolyzing metallo-β-lactamase from a nosocomial isolate of Pseudomonas aeruginosa in France [2] (2000) Emerging Infectious Diseases, 6 (1), pp. 84-85Poirel, L., Characterization of bla DIM-1, a novel integronlocated metallo-β-lactamase gene from a Pseudomonas stutzeri clinical isolate in the Netherlands (2009) 19 th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), O309. , Helsinki, FinlandPoole, K., Efflux-mediated antimicrobial resistance (2005) Journal of Antimicrobial Chemotherapy, 56 (1), pp. 20-51. , DOI 10.1093/jac/dki171Poole, K., Tetro, K., Zhao, Q., Neshat, S., Heinrichs, D.E., Bianco, N., Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression (1996) Antimicrobial Agents and Chemotherapy, 40 (9), pp. 2021-2028Poole, K., Krebes, K., McNally, C., Neshat, S., Multiple antibiotic resistance in Pseudomonas a

    Carboxymethylcellulose acetate butyrate/poly(4-vinyl-N-pentyl pyridinium bromide) blends as antimicrobial coatings

    No full text
    Blends of carboxymethyl cellulose acetate butyrate (CMCAB), a cellulose derivative, and poly(4-vinyl-N-pentyl pyridinium bromide) (QPVP-C5), an antimicrobial polymer, were prepared by casting method and characterized by means of Fourier transform infrared vibrational spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and contact angle measurements. Miscibility between CMCAB and QPVP-C5 was evidenced by DSC measurements of blends, which showed a single thermal event of Tg, and SEM images, which revealed homogenous morphology, regardless the blend composition. Moreover, thermal stability of QPVP-C5 was substantially enhanced, when it was mixed with CMCAB. Upon increasing the QPVP-C5 content in the blend the wettability and antimicrobial activity against Gram-positive bacteria Micrococcus luteus increased, indicating the surface enrichment by pyridinium groups. In fact, blends with 70 wt% QPVP-C5 reduced 5 log and 4 log the colony-forming units of Micrococcus luteus and Escherichia coli, respectively

    Carbapenem-resistant Acinetobacter baumannii outbreak at university hospital Caracterização de cepas de Acinetobacter baumannii durante um surto de infecção hospitalar

    No full text
    Nineteen clonally related imipenem-resistant Acinetobacter baumannii isolates were recovered from eight intensive care unit patients. All isolates harboured blaOXA-51-like &#946;-lactamase genes and showed the absence of 22 kDa fraction in outer membrane porin profile analysis. It suggests a combination of two mechanisms as responsible for carbapenemresistant phenotypes.<br>Foram isoladas 19 cepas monoclonais de 8 pacientes da unidade de terapia intensiva, resistentes aos carbapenêmicos. Todas as cepas apresentaram o gene blaOXA-51-like e por análise do perfil de proteínas de membrana notou-se ausência da fração de 22 kDa, sugerindo a combinação de dois mecanismos de resistência aos carbapenêmicos
    corecore