25 research outputs found

    The p21 cip1/waf1 cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells

    Get PDF
    The seriousness of ovarian cancer, which is related to the observed link between recurrency and cell cycle control defect, prompted us to explore the effect of ectopic expression of the cdk inhibitor p21cip1/waf1 on ovarian carcinoma chemosensitivity. The transfection of p21cip1/waf1 cDNA into SKOV3 and OVCAR3 cells led to reduction of tumor cell growth, enhanced susceptibility to cisplatin-induced apoptosis, and abolition of recurrency after cisplatin exposure. p21cip1/waf1 gene transfer allowed a marked reduction of the cisplatin concentration needed to erradicate the tumor cell population. These results suggest exploring the possible use of p21cip1/waf1 as an adjunctive to conventional chemotherapy

    ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair

    Get PDF
    Background: The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment. Results: A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest. Conclusion: Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1

    A human ribonuclease induces apoptosis associated with p21WAF1/CIP1 induction and JNK inactivation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ribonucleases are promising agents for use in anticancer therapy. Among the different ribonucleases described to be cytotoxic, a paradigmatic example is onconase which manifests cytotoxic and cytostatic effects, presents synergism with several kinds of anticancer drugs and is currently in phase II/III of its clinical trial as an anticancer drug against different types of cancer. The mechanism of cytotoxicity of PE5, a variant of human pancreatic ribonuclease carrying a nuclear localization signal, has been investigated and compared to that of onconase.</p> <p>Methods</p> <p>Cytotoxicity was measured by the MTT method and by the tripan blue exclusion assay. Apoptosis was assessed by flow cytometry, caspase enzymatic detection and confocal microscopy. Cell cycle phase analysis was performed by flow cytometry. The expression of different proteins was analyzed by western blot.</p> <p>Results</p> <p>We show that the cytotoxicity of PE5 is produced through apoptosis, that it does not require the proapoptotic activity of p53 and is not prevented by the multiple drug resistance phenotype. We also show that PE5 and onconase induce cell death at the same extent although the latter is also able to arrest the cell growth. We have compared the cytotoxic effects of both ribonucleases in the NCI/ADR-RES cell line by measuring their effects on the cell cycle, on the activation of different caspases and on the expression of different apoptosis- and cell cycle-related proteins. PE5 increases the number of cells in S and G<sub>2</sub>/M cell cycle phases, which is accompanied by the increased expression of cyclin E and p21<sup>WAF1/CIP1 </sup>together with the underphosphorylation of p46 forms of JNK. Citotoxicity of onconase in this cell line does not alter the cell cycle phase distribution and it is accompanied by a decreased expression of XIAP</p> <p>Conclusions</p> <p>We conclude that PE5 kills the cells through apoptosis associated with the p21<sup>WAF1/CIP1 </sup>induction and the inactivation of JNK. This mechanism is significantly different from that found for onconase.</p

    Upregulation of p27 and its inhibition of CDK2/cyclin E activity following DNA damage by a novel platinum agent are dependent on the expression of p21

    Get PDF
    The cisplatin analogue 1R,2R-diaminocyclohexane(trans-diacetato)(dichloro)platinumIV (DAP) is a DNA-damaging agent that will be entering clinical trials for its potent cytotoxic effects against cisplatin-resistant tumour cells. This cytotoxicity may reside in its ability to selectively activate G1-phase checkpoint response by inhibiting CDKs via the p53/p21 pathway. We have now evaluated the role of another CDK inhibitor p27 as a contributor to DAP-mediated inhibition of G1-phase CDK2 activity. Our studies in ovarian A2780 tumour cells demonstrate that p27 levels induced by DAP are comparable to or greater than those seen for p21. The induction of p27 is not through a transcriptional mechanism, but rather is due to a four-fold increase in protein stabilisation through a mechanism dependent on p21. Moreover, DAP-induced p21 promoted the selective increase of p27 in the CDK2 complex, but not in CDK4 complex, and this selective increase contributed to inhibition of the CDK2 kinase activity. The inhibited complex contained either p27 or p21, but not both, with the relative levels of cyclin E associated with p27 and p21 indicating that about 25% of the inhibition of CDK2 activity was due to p27 and 75% due to p21. This study provides the first evidence that p27 upregulation is directly attributable to activation of the p53/p21 pathway by a DNA-damaging agent, and promulgates p53/p21/p27 axis as a significant component of checkpoint response

    Cyclin D1 mediates resistance to apoptosis through upregulation of molecular chaperones and consequent redistribution of cell death regulators.

    No full text
    International audienceCyclin D1 is a key regulator of cell proliferation. It also controls other aspects of the cell fate, such as cellular senescence, apoptosis and tumourigenesis. We used B-lymphoid cell lines producing cyclin D1 to investigate the role of this protein in B-cell lymphomas and leukaemias. Constitutive low levels of cyclin D1 had no effect per se on cell proliferation, but conferred resistance to various apoptotic stimuli in B cells. Activation of the pro-apoptotic protein, Bax, was reduced and mitochondrial permeabilization and phosphatidylserine exposure following cytokine withdrawal were delayed in cyclin D1-producing cells. Proteomic analysis showed that the presence of cyclin D1 led to intracellular accumulation of various molecular chaperones. The chaperone, heat shock protein (Hsp)70, bound to both Bax and the mitochondrial apoptosis inducing factor following cytokine withdrawal, and impeded inhibitors of kappaB (IkappaB)-mediated inhibition of nuclear factor-kappaB anti-apoptotic signalling. Impairment of Hsp70 activity--using a pharmacological Hsp inhibitor or transfecting cells with an Hsp70-blocking antibody--restored the cellular response to mitochondrial apoptosis triggering. Thus, constitutive de-novo cyclin D1 production in B cells delays commitment to apoptosis by inducing Hsp70 chaperoning activity on pre- and post-mitochondrial pro-apoptotic factors
    corecore