545 research outputs found

    Geometric modeling of 3D woven preforms in composite T-joints

    Get PDF
    A common method to fabricate net-shaped three-dimensional (3D) woven preforms for composite T-joints is to weave flat 3D preforms via a standard weaving machine with variation in binder yarn path and then separate the preform in the form of a bifurcation. Folding introduces fiber architecture deformation at the 3D woven bifurcation area. In this paper, a geometric modeling approach is proposed to represent the realistic fiber architecture, as a preprocessor for finite element analyses to predict composite structural performance. Supported by X-ray micro-computed tomography (mCT), three important deformation mechanisms are observed including yarn stack shifting, cross-section bending, and cross-section flattening resulting from the folding process. Furthermore, a set of mathematical formulae for simulation of the deformations in the junction region are developed and satisfactory agreement is observed when compared with mCT scan results

    Erratum to : Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen

    Get PDF
    BACKGROUND The haemoflagellate Trypanosoma lewisi is a kinetoplastid parasite which, as it has been recently reported to cause human disease, deserves increased attention. Characteristic features of all kinetoplastid flagellates are a uniquely structured mitochondrial DNA or kinetoplast, comprised of a network of catenated DNA circles, and RNA editing of mitochondrial transcripts. The aim of this study was to describe the kinetoplast DNA of T. lewisi. METHODS/RESULTS In this study, purified kinetoplast DNA from T. lewisi was sequenced using high-throughput sequencing in combination with sequencing of PCR amplicons. This allowed the assembly of the T. lewisi kinetoplast maxicircle DNA, which is a homologue of the mitochondrial genome in other eukaryotes. The assembly of 23,745 bp comprises the non-coding and coding regions. Comparative analysis of the maxicircle sequence of T. lewisi with Trypanosoma cruzi, Trypanosoma rangeli, Trypanosoma brucei and Leishmania tarentolae revealed that it shares 78 %, 77 %, 74 % and 66 % sequence identity with these parasites, respectively. The high GC content in at least 9 maxicircle genes of T. lewisi (ATPase6; NADH dehydrogenase subunits ND3, ND7, ND8 and ND9; G-rich regions GR3 and GR4; cytochrome oxidase subunit COIII and ribosomal protein RPS12) implies that their products may be extensively edited. A detailed analysis of the non-coding region revealed that it contains numerous repeat motifs and palindromes. CONCLUSIONS We have sequenced and comprehensively annotated the kinetoplast maxicircle of T. lewisi. Our analysis reveals that T. lewisi is closely related to T. cruzi and T. brucei, and may share similar RNA editing patterns with them rather than with L. tarentolae. These findings provide novel insight into the biological features of this emerging human pathogen

    Making L2 learners\u27 reasoning skills visible: The potential of Computer Supported Collaborative Learning Environments

    Get PDF
    This paper explores the use of Computer Supported Collaborative Learning Environments (CSCLE) as multimodal spaces for promoting critical thinking for English as Second Language Learning (L2) education from multiple perspectives (Technology, Thinking Skills and Interaction). The exploration focuses on the use of a multitouch tabletop, and an accompanying application called Digital Mysteries, as affordances in CSCLE\u27s for making reasoning skill-based thinking visible for L2 learning in Higher Education.Despite the worldwide promotion of teaching thinking in L2 education, it is not always easy for teachers to identify the types of thinking skills being targeted in L2 pedagogical tasks. To the authors\u27 knowledge, little empirical interactional evidence is available to demonstrate critical thinking in L2 learner talk during group work. This paper examines interactions among three groups of Chinese English Language learners at a higher education institution in a CSCLE. Video data were collected of students\u27 thinking-in-action whilst engaging in multimodal interactions in the environment. Results show that new technologies can provide innovative and empirically driven ways in which L2 learners\u27 thinking is externalised and how critical reasoning can be tracked, promoted, evaluated and self regulated. The findings suggest that collaborations in a CSCLE can support the completion of tasks embedding high levels of cognitive complexity by L2 learners with effective use of limited cognitive resources. This leads to a number of recommendations about integrating the teaching of critical thinking skills into the L2 classroom using CSCLE technologies. (C) 2016 The Authors. Published by Elsevier Ltd

    Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex

    Get PDF
    Citation: Garcia, B. L., Zhi, H., Wager, B., Hook, M., & Skare, J. T. (2016). Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. Plos Pathogens, 12(1), 28. doi:10.1371/journal.ppat.1005404Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems

    Temperature-sensitive sarcomeric protein post-translational modifications revealed by top-down proteomics

    Get PDF
    Despite advancements in symptom management for heart failure (HF), this devastating clinical syndrome remains the leading cause of death in the developed world. Studies using animal models have greatly advanced our understanding of the molecular mechanisms underlying HF; however, differences in cardiac physiology and the manifestation of HF between animals, particularly rodents, and humans necessitates the direct interrogation of human heart tissue samples. Nevertheless, an ever-present concern when examining human heart tissue samples is the potential for artefactual changes related to temperature changes during tissue shipment or sample processing. Herein, we examined the effects of temperature on the post-translational modifications (PTMs) of sarcomeric proteins, the proteins responsible for muscle contraction, under conditions mimicking those that might occur during tissue shipment or sample processing. Using a powerful top-down proteomics method, we found that sarcomeric protein PTMs were differentially affected by temperature. Specifically, cardiac troponin I and enigma homolog isoform 2 showed robust increases in phosphorylation when tissue was incubated at either 4 °C or 22 °C. The observed increase is likely due to increased cyclic AMP levels and activation of protein kinase A in the tissue. On the contrary, cardiac troponin T and myosin regulatory light chain phosphorylation decreased when tissue was incubated at 4 °C or 22 °C. Furthermore, significant protein degradation was also observed after incubation at 4 °C or 22 °C. Overall, these results indicate that temperature exerts various effects on sarcomeric protein PTMs and careful tissue handling is critical for studies involving human heart samples. Moreover, these findings highlight the power of top-down proteomics for examining the integrity of cardiac tissue samples

    Novel insertions in the mitochondrial maxicircle of Trypanosoma musculi, a mouse trypanosome

    Get PDF
    Trypanosoma musculi is a, globally distributed, mouse-specific haemoflagellate, of the family Trypanosomatidae, which shares similar characteristics in morphology with Trypanosoma lewisi. The kinetoplast (mitochondrial) DNA of Trypanosomatidae flagellates is comprised of catenated maxicircles and minicircles. However, genetic information on the T. musculi kinetoplast remains largely unknown. In this study, the T. musculi maxicircle genome was completely assembled, with PacBio and Illumina sequencing, and the size was confirmed at 34 606 bp. It consisted of 2 distinct parts: the coding region and the divergent regions (DRs, DRI and II). In comparison with other trypanosome maxicircles (Trypanosoma brucei, Trypanosoma cruzi and T. lewisi), the T. musculi maxicircle has a syntenic distribution of genes and shares 73.9, 78.0 and 92.7% sequence identity, respectively, over the whole coding region. Moreover, novel insertions in MURF2 (630 bp) and in ND5 (1278 bp) were found, respectively, which are homologous to minicircles. These findings support an evolutionary scenario similar to the one proposed for insertions in Trypanosoma cruzi, the pathogen of American trypanosomiasis. These novel insertions, together with a deletion (281 bp) in ND4, question the role of Complex I in T. musculi. A detailed analysis of DRII indicated that it contains numerous repeat motifs and palindromes, the latter of which are highly conservative and contain A5C elements. The comprehensively annotated kinetoplast maxicircle of T. musculi reveals a high degree of similarity between this parasite and the maxicircle of T. lewisi and suggests that the DRII could be a valuable marker for distinguishing these evolutionarily related species

    New ruthenium complexes of fullerene C-60&C-70

    Get PDF
    The new complexes [Ru(NO)(PPh3)](2)(eta(2)-C-m)(m=60 1 or 70 2) have been prepared by heating a solution of C-60(or C-70) with [Ru(NO)(2)(PPh3)(2)] in toluene. They have been characterized by elemental analysis, IR, UV/VIS, XPS, C-13 and P-31 NMR spectroscopy. The photovaltaic effect for the new compounds has been studied

    Enzyme classification with peptide programs: a comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Efficient and accurate prediction of protein function from sequence is one of the standing problems in Biology. The generalised use of sequence alignments for inferring function promotes the propagation of errors, and there are limits to its applicability. Several machine learning methods have been applied to predict protein function, but they lose much of the information encoded by protein sequences because they need to transform them to obtain data of fixed length.</p> <p>Results</p> <p>We have developed a machine learning methodology, called peptide programs (PPs), to deal directly with protein sequences and compared its performance with that of Support Vector Machines (SVMs) and BLAST in detailed enzyme classification tasks. Overall, the PPs and SVMs had a similar performance in terms of Matthews Correlation Coefficient, but the PPs had generally a higher precision. BLAST performed globally better than both methodologies, but the PPs had better results than BLAST and SVMs for the smaller datasets.</p> <p>Conclusion</p> <p>The higher precision of the PPs in comparison to the SVMs suggests that dealing with sequences is advantageous for detailed protein classification, as precision is essential to avoid annotation errors. The fact that the PPs performed better than BLAST for the smaller datasets demonstrates the potential of the methodology, but the drop in performance observed for the larger datasets indicates that further development is required.</p> <p>Possible strategies to address this issue include partitioning the datasets into smaller subsets and training individual PPs for each subset, or training several PPs for each dataset and combining them using a bagging strategy.</p

    Amyloid-Like Aggregates of the Yeast Prion Protein Ure2 Enter Vertebrate Cells by Specific Endocytotic Pathways and Induce Apoptosis

    Get PDF
    BACKGROUND: A number of amyloid diseases involve deposition of extracellular protein aggregates, which are implicated in mechanisms of cell damage and death. However, the mechanisms involved remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we use the yeast prion protein Ure2 as a generic model to investigate how amyloid-like protein aggregates can enter mammalian cells and convey cytotoxicity. The effect of three different states of Ure2 protein (native dimer, protofibrils and mature fibrils) was tested on four mammalian cell lines (SH-SY5Y, MES23.5, HEK-293 and HeLa) when added extracellularly to the medium. Immunofluorescence using a polyclonal antibody against Ure2 showed that all three protein states could enter the four cell lines. In each case, protofibrils significantly inhibited the growth of the cells in a dose-dependent manner, fibrils showed less toxicity than protofibrils, while the native state had no effect on cell growth. This suggests that the structural differences between the three protein states lead to their different effects upon cells. Protofibrils of Ure2 increased membrane conductivity, altered calcium homeostasis, and ultimately induced apoptosis. The use of standard inhibitors suggested uptake into mammalian cells might occur via receptor-mediated endocytosis. In order to investigate this further, we used the chicken DT40 B cell line DKOR, which allows conditional expression of clathrin. Uptake into the DKOR cell-line was reduced when clathrin expression was repressed suggesting similarities between the mechanism of PrP uptake and the mechanism observed here for Ure2. CONCLUSIONS/SIGNIFICANCE: The results provide insight into the mechanisms by which amyloid aggregates may cause pathological effects in prion and amyloid diseases
    corecore