14,947 research outputs found
Asymptotic normality of extreme value estimators on
Consider i.i.d. random elements on . We show that, under an
appropriate strengthening of the domain of attraction condition, natural
estimators of the extreme-value index, which is now a continuous function, and
the normalizing functions have a Gaussian process as limiting distribution. A
key tool is the weak convergence of a weighted tail empirical process, which
makes it possible to obtain the results uniformly on . Detailed examples
are also presented.Comment: Published at http://dx.doi.org/10.1214/009053605000000831 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Tracking eye movements when solving geometry problems with handwriting devices
The present study investigated the following issues: (1) whether differences are evident in the eye movement measures of successful and unsuccessful problem-solvers; (2) what is the relationship between perceived difficulty and eye movement measures; and (3) whether eye movements in various AOIs differ when solving problems. Sixty-three 11th grade students solved five geometry problems about the properties of similar triangles. A digital drawing tablet and sensitive pressure pen were used to record the responses. The results indicated that unsuccessful solvers tended to have more fixation counts, run counts, and longer dwell time on the problem area, whereas successful solvers focused more on the calculation area. In addition, fixation counts, dwell time, and run counts in the diagram area were positively correlated with the perceived difficulty, suggesting that understanding similar triangles may require translation or mental rotation. We argue that three eye movement measures (i.e., fixation counts, dwell time, and run counts) are appropriate for use in examining problem solving given that they differentiate successful from unsuccessful solvers and correlate with perceived difficulty. Furthermore, the eye-tracking technique provides objective measures of students’ cognitive load for instructional designers
On dynamic loads in parallel shaft transmissions. 2: Parameter study
Solutions to the governing equations of a spur gear transmission model, developed in NASA TM-100180 (AVSCOM TM-87-C-2), are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also. it is found that the applied load and shaft inertia have little effect on the dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect on dynamic loading; the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness the higher the rotating speed required for dynamic response
On dynamic loads in parallel shaft transmissions. 1: Modelling and analysis
A model of a simple parallel-shaft, spur-gear transmission is presented. The model is developed to simulate dynamic loads in power transmissions. Factors affecting these loads are identified. Included are shaft stiffness, local compliance due to contact stress, load sharing, and friction. Governing differential equations are developed and a solution procedure is outlined. A parameter study of the solutions is presented in NASA TM-100181 (AVSCOM TM-87-C-3)
Effect of extended tooth contact on the modeling of spur gear transmissions
In some gear dynamic models, the effect of tooth flexibility is ignored when the model determines which pairs of teeth are in contact. Deflection of loaded teeth is not introduced until the equations of motion are solved. This means the zone of tooth contact and average tooth meshing stiffness are underestimated and the individual tooth load is overstated, especially for heavily-loaded gears. The static transmission error and dynamic load of heavily-loaded, low-contact-ratio spur gears is compared with this effect both neglected and included. Neglecting the effect yields an underestimate of resonance speeds and an overestimate of the dynamic load
The first measurement of meson semi-leptonic decay contribution to non-photonic electrons at RHIC
We present the first measurement for the meson semi-leptonic decay
contribution to non-photonic electrons at RHIC using non-photonic electron
azimuthal correlations with charged hadrons in p+p collisions at GeV from STAR.Comment: 4 pages, 3 figures, Quark Matter 2006 Proceedings, to appear in J.
Phys.
Chebyshev polynomial filtered subspace iteration in the Discontinuous Galerkin method for large-scale electronic structure calculations
The Discontinuous Galerkin (DG) electronic structure method employs an
adaptive local basis (ALB) set to solve the Kohn-Sham equations of density
functional theory (DFT) in a discontinuous Galerkin framework. The adaptive
local basis is generated on-the-fly to capture the local material physics, and
can systematically attain chemical accuracy with only a few tens of degrees of
freedom per atom. A central issue for large-scale calculations, however, is the
computation of the electron density (and subsequently, ground state properties)
from the discretized Hamiltonian in an efficient and scalable manner. We show
in this work how Chebyshev polynomial filtered subspace iteration (CheFSI) can
be used to address this issue and push the envelope in large-scale materials
simulations in a discontinuous Galerkin framework. We describe how the subspace
filtering steps can be performed in an efficient and scalable manner using a
two-dimensional parallelization scheme, thanks to the orthogonality of the DG
basis set and block-sparse structure of the DG Hamiltonian matrix. The
on-the-fly nature of the ALBs requires additional care in carrying out the
subspace iterations. We demonstrate the parallel scalability of the DG-CheFSI
approach in calculations of large-scale two-dimensional graphene sheets and
bulk three-dimensional lithium-ion electrolyte systems. Employing 55,296
computational cores, the time per self-consistent field iteration for a sample
of the bulk 3D electrolyte containing 8,586 atoms is 90 seconds, and the time
for a graphene sheet containing 11,520 atoms is 75 seconds.Comment: Submitted to The Journal of Chemical Physic
Optimization of Picosecond Laser Parameters for Surface Treatment of Composites Using a Design of Experiments (DOE) Approach
Based on guidelines from the Federal Aviation Administration, research supported by the NASA Advanced Composites Project is investigating methods to improve process control for surface preparation and pre-bond surface characterization on aerospace composite structures. The overall goal is to identify high fidelity, rapid, and reproducible surface treatments and surface characterization methods to reduce the uncertainty associated with the bonding process. The desired outcome is a more reliable bonded airframe structure, and to reduce time to achieve certification. In this work, a design of experiments (DoE) approach was conducted to determine optimum laser ablation conditions using a pulsed laser source with a nominal pulse width of 10 picoseconds. The laser power, frequency, scan speed, and number of passes (1 or 2) were varied within the laser system operating boundaries. Aerospace structural carbon fiber reinforced composites (Torayca 3900-2/T800H) were laser treated, then characterized for contamination, and finally bonded for mechanical testing. Pre-bond characterization included water contact angle (WCA) using a handheld device, ablation depth measurement using scanning electron microscopy (SEM), and silicone contamination measurement using laser induced breakdown spectroscopy (LIBS). In order to accommodate the large number of specimens in the DoE, a rapid-screening, double cantilever beam (DCB) test specimen configuration was devised based on modifications to ASTM D5528. Specimens were tested to assess the failure modes observed under the various laser surface treatment parameters. The models obtained from this DoE indicated that results were most sensitive to variation in the average laser power. Excellent bond performance was observed with nearly 100% cohesive failure for a wide range of laser parameters. Below about 200 mW, adhesive failure was observed because contamination was left on the surface. For laser powers greater than about 600 mW, large amounts of fiber were exposed, and the failure mode was predominately fiber tear
- …