20 research outputs found

    Defoliation levels on gas exchange and composition of grape clusters cv. Italia

    Get PDF
    O objetivo do trabalho foi avaliar a influência da desfolha nas trocas gasosas de folhas de videira em diferentes fases fenológicas e, também, no desenvolvimento dos cachos e bagas da cv. Itália no Vale do Submédio São Francisco. Foram realizados quatro níveis de desfolha (5, 10, 15 e 20 folhas mantidas no ramo de produção) e nove repetições. As avaliações de trocas gasosas (taxa de assimilação de CO2 (A, μmol CO2 m-2s-1), taxa de transpiração (E, mmol vapor d’água m-2s-1), condutância estomática (gs, mol m-2s-1), eficiência do uso da água (EUA, μmolCO2 (mmol H2O)-1, atividade de carboxilação da enzima ribulose 1, 5- difosfato carboxilase (Rubisco) e temperatura da folha) foram determinadas em 4 fases fenológicas (60, 72, 84 e 106 dias após a poda). Também foram avaliados: produção por planta (kg planta-1), diâmetro (mm), comprimento (mm) e volume (mL) médio de bagas; teor de sólidos solúveis (Brixº) e acidez titulável. Os resultados obtidos não revelaram diferenças significativas entre os tratamentos de níveis de desfolha, em relação às características estudadas, durante as fases de desenvolvimento das bagas, indicando que a remoção das folhas não afetou os processos de trocas gasosas das folhas opostas ao cacho.The objective of this study was to evaluate the influence of defoliation on gas exchange of vine leaves at different phenological stages, and also in the development of clusters and berries of cv. Italia in the Valley of Submédio San Francisco. It was performed four levels of defoliation (5, 10, 15 and 20 leaves kept in production branch) and nine repetitions. The assessments of gas exchange (CO2 assimilation rate (A, μmol CO2 m-2 s-1), transpiration rate (E, mmol water steam m-2 s-1), stomatal conductance (gs, mol m-2 s-1), water use efficiency (USA μmolCO2; mmol H2O)-1, carboxylation activity of the ribulose enzyme 1,5-diphosphate carboxylase (Rubisco) and leaf temperature were determined in four phenological phases (60, 72, 84 and 106 days after pruning). It was also evaluated: yield per plant (kg plant-1), diameter (mm), length (mm) and volume (mL) average of berries; soluble solids content (°Brix) and titratable acidity. Results revealed no significant differences between the levels of defoliation in the traits studied during the development stages of the berries, indicating that removal of leaves did not affect the gas exchange process of the leaves opposed to the cluster

    Relações hídricas de videiras cultivadas no Vale do São Francisco sob diferente porta-enxertos e estratégias de irrigação

    Get PDF
    Existe aumento na demanda por vinhos de alta qualidade no Vale do São Francisco, nova região produtora de vinhos no Brasil. Como a qualidade da uva depende do estado hídrico da videira, o conhecimento dos efeitos do porta-enxerto e do manejo de irrigação sobre as relações hídricas da videira é essencial para otimizar a produção e qualidade da uva. Sendo assim, avaliou-se a influência de porta-enxertos e estratégias de irrigação sobre as relações hídricas e o vigor vegetativo de videiras cultivadas em Petrolina, PE. Duas variedades copa, 'Moscato Canelli' e 'Syrah', enxertadas sobre IAC 572 e 1103 Paulsen foram submetidas a duas estratégias de irrigação: irrigação com deficit, na qual a irrigação foi suspensa após o início da maturação; e irrigação parcial das raízes, em que a água foi aplicada (100% da evapotranspiração da cultura) após o pegamento dos frutos, em apenas metade do sistema radicular, alternando os lados periodicamente (24 dias). Em geral, todos os tratamentos apresentaram valores de potencial hídrico foliar de base superiores a -0,2 MPa, indicando ausência de estresse hídrico. O estado hídrico da videira foi mais afetado pela porta-enxerto que pelos tratamentos hídricos. Os dois cultivares enxertadas sobre o IAC 572 apresentaram os maiores valores de potencial hídrico foliar, medido ao meio dia, e de potencial hídrico do caule, medido em folhas 1 hora após o acondicionamento em saco plástico e papel alumínio. Nos dois cultivares, a condutância estomática (g s), transpiração (E) e índice de área foliar (IAF) foram mais afetados pelos porta-enxertos que pelos tratamentos de irrigação. Os cultivares enxertados sobre IAC 572 apresentaram maiores g s, E e IAF em relação às enxertadas sobre o 1103 Paulsen. O elevado vigor vegetativo das cultivares foi provavelmente devido ao efeito do IAC 572 sobre a condutividade hidráulica das folhas e à maior absorção de água pelo sistema radicular deste porta-enxerto.There is an increased demand for high quality winegrapes in the São Francisco Valley, a new wine producing area in Brazil. As the grape quality is closely linked to the soil water status, understanding the effects of rootstock and irrigation management on grapevine water relations is essential to optimize yield and quality. This study was carried out to investigate the effects of irrigation strategies and rootstocks on water relations and scion vigour of field-grown grapevines in Petrolina, Pernambuco state, Brazil. The cultivars used as scions are Moscato Canelli and Syrah, both grafted onto IAC 572 and 1103 Paulsen rootstocks. The following water treatments were used: deficit irrigation, with holding water after veraison; and partial root-zone drying, supplying (100% of crop evapotranspiration) of the water loss to only one side of the root system after fruit set, alternating the sides periodically (about 24 days). In general, all treatments had values of pre-dawn leaf water potential higher than -0.2 MPa, suggesting absence of water stress. The vine water status was more affected by rootstock type than irrigation strategies. Both cultivars grafted on IAC 572 had the highest values of midday leaf water potential and stem water potential, measured on non-transpiring leaves, which were bagged with both plastic sheet and aluminum foil at least 1 h before measurements. For both cultivars, the stomatal conductance (g s), transpiration (E) and leaf area index (LAI) were also more affected by roostsotck type than by irrigation strategies. The IAC 572 rootstock presented higher g s, E and LAI than the 1103 Paulsen. Differences in vegetative vigor of the scion grafted onto IAC 572 rootstocks were related to its higher leaf specific hydraulic conductance and deeper root system as compared to the 1103 Paulsen, which increased the water-extraction capability, resulting in a better vine water status

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Physiological responses of maize and cowpea to intercropping

    No full text
    Estudou-se, na Embrapa-Centro de Pesquisa Agropecuária do Trópico Semi-Árido (CPATSA) em Petrolina, PE, o efeito do plantio consorciado sobre o comportamento hídrico, trocas gasosas e produtividade do milho (Zea mays L.) cv. Centralmex, e do caupi (Vigna unguiculata L. (Walp)) cv. Pitiuba, em condições semi-áridas. Os tratamentos foram: milho e caupi em cultivos isolados na população de 40.000 plantas ha-1, e consorciados na população de 20.000 plantas ha-1. No sistema de consórcio, o milho obteve valores mais altos de potencial hídrico, condutância estomática, transpiração e fotossíntese, em relação ao cultivo isolado. Com o caupi, observaram-se valores mais altos de potencial hídrico, porém menor condutância, transpiração e fotossíntese em relação ao cultivo isolado. Observou-se incremento de 18% na produtividade do milho, enquanto a do caupi foi reduzida em 5%, em relação aos respectivos sistemas de monocultivo. Entretanto, o índice de equivalência da terra obtido foi de 1,13, o que indica vantagens do consórcio sobre os sistemas isolados. O maior índice parcial de equivalência de terra foi obtido com o milho, sugerindo que esta espécie foi o principal componente a influenciar a produtividade final do sistema estudado.The effect of intercropping on plant water status, gas exchange and productivity of maize (Zea mays L.) cv. Centralmex, and cowpea (Vigna unguiculata L. (Walp)) cv. Pitiuba were evaluated under semi-arid conditions at the Embrapa-Centro de Pesquisa Agropecuária do Trópico Semi-Árido (CPATSA) at Petrolina, PE, Brazil. The treatments were: maize and cowpea as sole crops, at a population of 40,000 plants ha-1, and intercropped at a population of 20,000 plants ha-1. The results obtained in this paper appear to be related to the degree of competition experienced by the components, mainly for water and light. Maize intercropped had higher values of leaf water potential, stomatal conductance, transpiration and photosynthesis than as sole crop. Intercropped cowpea had higher values of leaf water potential but lower stomatal conductance, transpiration and photosynthesis than sole cowpea. Maize productivity increased 18% in relation to sole crop whereas a 5% decrease was observed with cowpea. Despite these facts the Land Equivalent Ratio obtained was 1.13 indicating intercropping advantage over the sole system. The higher partial Land Equivalent Ratio observed for maize suggests that this specie was the main component influencing the final productivity of the intercropping system studied

    Gas exchange of the umbu tree under semi-arid conditions

    No full text
    A study was carried out at Embrapa Semi-Árido, Petrolina-PE, Brazil, aiming to understand the gas exchange process of the umbu tree (Spondias tuberosa Arr. Cam.) in the dry and rainy seasons. Stomatal conductance, transpiration, photosynthesis and internal CO2 concentration were obtained with a portable infrared gas analyzer (IRGA). During the dry season the umbu tree showed a much lower stomatal conductance early in the morning, as soon as the vapor pressure deficit increased, apparently affecting CO2 assimilation more than transpiration. The highest values were detected around 6:00 am but decreased to the lowest points between 10:00 am and 2:00 pm. During the rainy season, however, stomatal conductance, transpiration and photosynthesis were significantly higher, reaching the highest values between 8:00 and 10:00 am and the lowest around 2:00 pm. It was also observed at 4:00 pm, mainly during the rainy season, an increase on these variables indicating that the umbu tree exhibits a two-picked daily course of gas exchange

    Water status and gas exchange of umbu plants (Spondias tuberosa Arr. Cam.) propagated by seeds and stem cuttings

    No full text
    The experiment was carried out at the Embrapa Semi-Árido, Petrolina-PE, Brazil, in order to study the physiological responses of umbu plants propagated by seeds and by stem cuttings under water stress conditions, based on leaf water potential and gas exchange measurements. Data were collected in one-year plants established in pots containing 30 kg of a sandy soil and submitted to twenty-day progressive soil water deficit. The evaluations were based on leaf water potential and gas exchange data collection using psychrometric chambers and a portable infra-red gas analyzer, respectively. Plants propagated by seeds maintained a significantly higher water potential, stomatal conductance, transpiration and photosynthesis under decreasing soil water availability. However, plants propagated by stem cuttings were unable to maintain a favorable internal water balance, reflecting negatively on stomatal conductance and leaf gas exchange. This fact is probably because umbu plants propagated by stem cuttings are not prone to formation of root tubers which are reservoirs for water and solutes. Thus, the establishing of umbu plants propagated by stem cuttings must be avoided in areas subjected to soil water deficit
    corecore