855 research outputs found

    Swimming exercise demonstrates advantages over running exercise in reducing proteinuria and glomerulosclerosis in spontaneously hypertensive rats

    Get PDF
    Experimental studies in animal models have described the benefits of physical exercise (PE) to kidney diseases associated with hypertension. Land- and water-based exercises induce different responses in renal function. Our aim was to evaluate the renal alterations induced by different environments of PE in spontaneously hypertensive rats (SHRs). The SHRs were divided into sedentary (S), swimming exercise (SE), and running exercise (RE) groups, and were trained for 8 weeks under similar intensities (60 min/day). Arterial pressure (AP) and heart rate (HR) were recorded. The renal function was evaluated through urinary volume at each week of training; sodium and potassium excretions, plasma and urinary osmolarities, glomerular filtration rate (GFR), levels of proteinuria, and renal damage were determined. SE and RE rats presented reduced mean AP, systolic blood pressure, and HR in comparison with S group. SE and RE rats showed higher urine osmolarity compared with S. SE rats showed higher free water clearance (P < 0.01), lower urinary density (P < 0.0001), and increased weekly urine volume (P < 0.05) in comparison with RE and S groups. GFR was increased in both SE and RE rats. The proteinuria of SE (7.0 ± 0.8 mg/24 h) rats was decreased at the 8th week of the PE in comparison with RE (9.6 ± 0.8 mg/24 h) and S (9.8 ± 0.5 mg/24 h) groups. The glomerulosclerosis was reduced in SE rats (P < 0.02). SE produced different response in renal function in comparison with RE, in which only swimming-trained rats had better profile for proteinuria and glomerulosclerosis

    Exact exchange-correlation potential of a ionic Hubbard model with a free surface

    Full text link
    We use Lanczos exact diagonalization to compute the exact exchange-correlation (xc) potential of a Hubbard chain with large binding energy ("the bulk") followed by a chain with zero binding energy ("the vacuum"). Several results of density functional theory in the continuum (sometimes controversial) are verified in the lattice. In particular we show explicitly that the fundamental gap is given by the gap in the Kohn-Sham spectrum plus a contribution due to the jump of the xc-potential when a particle is added. The presence of a staggered potential and a nearest-neighbor interaction V allows to simulate a ionic solid. We show that in the ionic regime in the small hopping amplitude limit the xc-contribution to the gap equals V, while in the Mott regime it is determined by the Hubbard U interaction. In addition we show that correlations generates a new potential barrier at the surface

    Tearing Out the Income Tax by the (Grass)Roots

    Get PDF
    Landscapes are increasingly fragmented, and conservation programs have started to look at network approaches for maintaining populations at a larger scale. We present an agent-based model of predator–prey dynamics where the agents (i.e. the individuals of either the predator or prey population) are able to move between different patches in a landscaped network. We then analyze population level and coexistence probability given node-centrality measures that characterize specific patches. We show that both predator and prey species benefit from living in globally well-connected patches (i.e. with high closeness centrality). However, the maximum number of prey species is reached, on average, at lower closeness centrality levels than for predator species. Hence, prey species benefit from constraints imposed on species movement in fragmented landscapes since they can reproduce with a lesser risk of predation, and their need for using anti-predatory strategies decreases.authorCount :

    Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing

    Get PDF
    Wide-field imaging surveys such as the Dark Energy Survey (DES) rely on coarse measurements of spectral energy distributions in a few filters to estimate the redshift distribution of source galaxies. In this regime, sample variance, shot noise, and selection effects limit the attainable accuracy of redshift calibration and thus of cosmological constraints. We present a new method to combine wide-field, few-filter measurements with catalogs from deep fields with additional filters and sufficiently low photometric noise to break degeneracies in photometric redshifts. The multi-band deep field is used as an intermediary between wide-field observations and accurate redshifts, greatly reducing sample variance, shot noise, and selection effects. Our implementation of the method uses self-organizing maps to group galaxies into phenotypes based on their observed fluxes, and is tested using a mock DES catalog created from N-body simulations. It yields a typical uncertainty on the mean redshift in each of five tomographic bins for an idealized simulation of the DES Year 3 weak-lensing tomographic analysis of σΔz=0.007\sigma_{\Delta z} = 0.007, which is a 60% improvement compared to the Year 1 analysis. Although the implementation of the method is tailored to DES, its formalism can be applied to other large photometric surveys with a similar observing strategy.Comment: 24 pages, 11 figures; matches version accepted to MNRA

    Hypertrabeculated Left Ventricular Myocardium in Relationship to Myocardial Function and Fibrosis: The Multi-Ethnic Study of Atherosclerosis

    Get PDF
    This research was supported by contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01- HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC- 95168 and N01-HC-95169 from the National Heart, Lung, and Blood Institute, by grants UL1-TR-000040 and UL1-TR-001079 from NCRR, and by a grant from Bayer Healthcare for the use of gadolinium contrast agent. G.C. is supported by the National Institute for Health Research Rare Diseases Translational Research Collaboration (NIHR RD-TRC). J.C.M. is directly and indirectly supported by the University College London Hospitals NIHR Biomedical Research Centre and Biomedical Research Unit at Barts Hospital, respectively

    Agenesia e lipoma de corpo caloso: relato de caso

    Get PDF
    The agenesis and lipoma of the corpus callosum is a very rare association. We report the case of a 18-years old woman with rare epileptic seizures since the age of 6 years, normal neurological examination, as well as normal electroencephalogram. The brain computed tomography scanning and the magnetic resonance showed the lipoma and the agenesis of the corpus callosum.A agenesia e lipoma do corpo caloso é uma associação muito rara. Relatamos o caso de uma paciente de 18 anos com raras crises epilépticas desde os 6 anos de idade, exame neurológico normal, assim como eletrencefalograma normal. A tomografia computadorizada de crânio e a ressonância magnética mostraram o lipoma e a agenesia de corpo caloso.Escola Paulista de MedicinaUNIFESP, EPMSciEL

    Direct and Indirect Induction of a Compensatory Phenotype that Alleviates the Costs of an Inducible Defense

    Get PDF
    Organisms often exhibit phenotypic plasticity in multiple traits in response to impending environmental change. Multiple traits phenotypic plasticity is complex syndrome brought on by causal relations in ecological and physiological context. Larvae of the salamander Hynobius retardatus exhibit inducible phenotypic plasticity of two traits, when at risk of predation by dragonfly larvae. One induced phenotype is an adaptive defense behaviour, i.e., stasis at the bottom of water column, directly triggered by the predation risk. Another one is a compensatory phenotype, i.e., enlarged external gills, for an unavoidable cost (hypoxia) associated with the induced defense. We identified two ways by which this compensatory phenotype could be induced. The compensatory phenotype is induced in response to not only the associated hypoxic conditions resulting from the induced defense but also the most primary but indirect cause, presence of the predator

    Lost & Found Dark Matter in Elliptical Galaxies

    Full text link
    There is strong evidence that the mass in the Universe is dominated by dark matter, which exerts gravitational attraction but whose exact nature is unknown. In particular, all galaxies are believed to be embedded in massive haloes of dark matter. This view has recently been challenged by surprisingly low random stellar velocities in the outskirts of ordinary elliptical galaxies, which were interpreted as indicating a lack of dark matter (Mendez et al. 2001; Romanowsky et al. 2003). Here we show that the low velocities are in fact compatible with galaxy formation in dark-matter haloes. Using numerical simulations of disc-galaxy mergers, we find that the stellar orbits in the outer regions of the resulting ellipticals are very elongated. These stars were torn by tidal forces from their original galaxies during the first close passage and put on outgoing trajectories. The elongated orbits, combined with the steeply falling density profile of the observed tracers, explain the observed low velocities even in the presence of large amounts of dark matter. Projection effects when viewing a triaxial elliptical can lead to even lower observed velocities along certain lines of sight.Comment: Letter to Nature, 13+15 pages, 2+11 figures, improved text, extended Supplementary Information adde

    Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV

    Get PDF
    We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also presented.Comment: 11 pages, 2 figures, 2 table
    corecore