391 research outputs found

    Effect of breed on meat quality and global acceptance of native lambs and their crosses

    Get PDF
    International projections point to the growth in global production of sheep meat, mainly from developing countries. However, the exigencies of consumers on characterization of production systems, nutritional information, and sensorial analysis to target the preferences must be answered. The aim of this study was to characterize the meat quality and the global acceptance of Brazilian native ovine breeds and their crosses, and discuss these aspects on the current basis of human health and wellbeing. Three native breeds (Morada Nova, Rabo Largo, and Santa Inês) that were managed in semi-intensive systems and raised in semi-arid Brazilian regions were used. Chemical composition and fatty acid analysis, sensory evaluation and health indices were accessed. The combined effects of breed, sex and breed by sex interaction produced differentiation in meat fatty acid (FA) profiles. The cholesterol contents ranged between 51 and 59.1 mg/100 g. The Morada Nova lambs showed the lowest lipid content (1.93%). The Morada Nova x Rabo Largo crossbreed breed has the potential to increase the content of conjugated linoleic acid. The high content of α-linolenic acid, which is considered hypocholesterolemic, was responsible for better health indices. The moderate acceptability obtained in sensory traits is compatible with the requirements of the consumer market. The combination of nutritional and sensory traits associated with human health and wellbeing that is presented by these native ovine breeds qualifies them as a good choice of red meat to be included in a larger proportion in human food. Keywords: fatty acids, healthier meat, semi-arid region, shee

    Chemoenzymatic Synthesis of Luliconazole Mediated by Lipases

    Get PDF
    A straightforward chemoenzymatic synthesis of luli- conazole has been developed. The key step involved the preparation of the enantiomerically pure beta-halohydrin (1S)-2-chloro- 1-(2,4-dichlorophenyl)-1-ethanol through kinetic resolution of the corresponding racemic acetate. This was achieved by a hydrolytic approach, mediated by the lipase from Thermomyces lanuginosus or Novozym 435\uae. The latter enzyme proved to be a robust biocatalyst for the kinetic resolution, and the halohydrin was obtained with high selectivity (ee > 99%, E > 200) after just 15 min, at 45 \ub0C. It could be reused five times with maintenance of high values of both conversion and enantioselectivity. Subsequently, the (S)-beta-halohydrin was sub- jected to a mesylation reaction; the mesylated derivative re- acted with 1-cyanomethylimidazole in the presence of CS2 to give luliconazole in 43 % yield with >99 % ee

    Enhanced solar driven photocatalytic removal of antibiotics from aquaculture effluents by TiO2/carbon quantum dot composites

    Get PDF
    Aquaculture exploitation is associated with the consumption of antibiotics, such as sulfadiazine (SDZ), sulfamethoxazole (SMX) and trimethoprim (TMP), the latter two being also vastly used to treat bacterial infections in humans. Consequently, and given that aquaculture wastewater treatments are not actually designed for the removal of antibiotics, they are ubiquitous in aquaculture effluents, which sets the risk of bacterial resistance. To face the need for an efficient and sustainable treatment to remove these antibiotics from the referred effluents, carbon quantum dots (CQDs) were produced, incorporated into titanium dioxide (TiO2), and evaluated for solar driven photodegradation of SDZ, SMX and TMP. Eleven different materials were synthesized and tested for their photocatalytic activity in phosphate buffer solution (PBS) and synthetic sea salts (SSS), used as synthetic matrices to simulate fresh and brackish water, respectively. Upon selection of the most efficient photocatalyst for each antibiotic and matrix, kinetic results demonstrated that its use allowed for remarkable reductions of SDZ, SMX and TMP half-life times (t1/2) in both matrices (between 19 and 68 times). Therefore, the application of the here synthesized photocatalysts for the advanced treatment of aquaculture effluents is promising, allowing for a green solar driven removal of antibiotics.publishe

    Einstein energy associated with the Friedmann -Robertson -Walker metric

    Full text link
    Following Einstein's definition of Lagrangian density and gravitational field energy density (Einstein, A., Ann. Phys. Lpz., 49, 806 (1916); Einstein, A., Phys. Z., 19, 115 (1918); Pauli, W., {\it Theory of Relativity}, B.I. Publications, Mumbai, 1963, Trans. by G. Field), Tolman derived a general formula for the total matter plus gravitational field energy (P0P_0) of an arbitrary system (Tolman, R.C., Phys. Rev., 35(8), 875 (1930); Tolman, R.C., {\it Relativity, Thermodynamics & Cosmology}, Clarendon Press, Oxford, 1962)); Xulu, S.S., arXiv:hep-th/0308070 (2003)). For a static isolated system, in quasi-Cartesian coordinates, this formula leads to the well known result P0=g(T00T11T22T33) d3xP_0 = \int \sqrt{-g} (T_0^0 - T_1^1 -T_2^2 -T_3^3) ~d^3 x, where gg is the determinant of the metric tensor and TbaT^a_b is the energy momentum tensor of the {\em matter}. Though in the literature, this is known as "Tolman Mass", it must be realized that this is essentially "Einstein Mass" because the underlying pseudo-tensor here is due to Einstein. In fact, Landau -Lifshitz obtained the same expression for the "inertial mass" of a static isolated system without using any pseudo-tensor at all and which points to physical significance and correctness of Einstein Mass (Landau, L.D., and Lifshitz, E.M., {\it The Classical Theory of Fields}, Pergamon Press, Oxford, 2th ed., 1962)! For the first time we apply this general formula to find an expression for P0P_0 for the Friedmann- Robertson -Walker (FRW) metric by using the same quasi-Cartesian basis. As we analyze this new result, physically, a spatially flat model having no cosmological constant is suggested. Eventually, it is seen that conservation of P0P_0 is honoured only in the a static limit.Comment: By mistake a marginally different earlier version was loaded, now the journal version is uploade

    A Weyl-Dirac Cosmological Model with DM and DE

    Full text link
    In the Weyl-Dirac (W-D) framework a spatially closed cosmological model is considered. It is assumed that the space-time of the universe has a chaotic Weylian microstructure but is described on a large scale by Riemannian geometry. Locally fields of the Weyl connection vector act as creators of massive bosons having spin 1. It is suggested that these bosons, called weylons, provide most of the dark matter in the universe. At the beginning the universe is a spherically symmetric geometric entity without matter. Primary matter is created by Dirac's gauge function very close to the beginning. In the early epoch, when the temperature of the universe achieves its maximum, chaotically oriented Weyl vector fields being localized in micro-cells create weylons. In the dust dominated period Dirac's gauge function is giving rise to dark energy, the latter causing the cosmic acceleration at present. This oscillatory universe has an initial radius identical to the Plank length = 1.616 exp (-33) cm, at present the cosmic scale factor is 3.21 exp (28) cm, while its maximum value is 8.54 exp (28) cm. All forms of matter are created by geometrically based functions of the W-D theory.Comment: 25 pages. Submitted to GR

    Consistency of the mass variation formula for black holes accreting cosmological fluids

    Full text link
    We address the spherical accretion of generic fluids onto black holes. We show that, if the black hole metric satisfies certain conditions, in the presence of a test fluid it is possible to derive a fully relativistic prescription for the black hole mass variation. Although the resulting equation may seem obvious due to a form of it appearing as a step in the derivation of the Schwarzschild metric, this geometrical argument is necessary to fix the added degree of freedom one gets for allowing the mass to vary with time. This result has applications on cosmological accretion models and provides a derivation from first principles to serve as a base to the accretion equations already in use in the literature.Comment: 4 pages, 1 figure. To appear in Gen. Rel. Gra

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    Stomatal responses of Eucalyptus species to elevated CO2 concentration and drought stress

    Get PDF
    Five species of Eucalyptus (E. grandis, E. urophylla, E. camaldulensis, E. torelliana, and E. phaeotrica), among the ten species most commonly used in large scale plantations, were selected for studies on the effects of elevated CO2 concentration [CO2] and drought stress on stomatal responses of 2.5-month old seedlings. The first three species belong to the subgenus Smphyomyrtus, whereas the fourth species belongs to the subgenus Corymbia and E. phaeotrica is from the subgenus Monocalyptus. Seedlings were grown in four pairs of open-top chambers, arranged to have 2 plants of each species in each chamber, with four replications in each of two CO2 concentrations: 350 ± 30 mumol mol-1 and 700 ± 30 mumol mol-1. After 100 days in the chambers, a series of gas exchange measurements were made. Half the plants in each chamber, one plant per species per chamber, were drought-stressed by withholding irrigation, while the remaining plants continued to be watered daily. Drought stress decreased stomatal conductance, photosynthesis and transpiration rates in all the species. The effect of drought stress on stomatal closure was similar in both [CO2]. The positive effects of elevated [CO2] on photosynthesis and water use efficiency were maintained longer during the stress period than under well-watered conditions. The photosynthetic rate of E. phaeotrica was higher even in the fourth day of the drought stress. Drought stress increased photoinhibition of photosynthesis, as measured by chlorophyll fluorescence, which varied among the species, as well as in relation to [CO2]. The results are in agreement with observed differences in stomatal responses between some eucalyptus species of the subgenera Symphyomyrtus and Monocalyptus

    Statistical Properties of the Linear Sigma Model

    Get PDF
    The statistical equilibrium properties of the linear sigma model are studied, with a view towards characterizing the field configurations employed as initial conditions for numerical simulations of the formation of disoriented chiral condensates in high-energy nuclear collisions. The field is decomposed into its spatial average (the order parameter) and the fluctuations (the quasi- particles) and enclosed in a rectangular box with periodic boundary conditions. The quantized quasi-particle modes are described approximately by Klein-Gordon dispersion relations containing an effective mass that depends on both the temperature and the magnitude of the order parameter. The thermal fluctuations are instrumental in shaping the effective potential governing the order parameter, and the evolution of its statistical distribution with temperature is discussed, as is the behavior of the associated effective masses. As the system is cooled the field fluctuations subside, causing a smooth change from the high-temperature phase in which chiral symmetry is approximately restored towards the normal phase. Of practical interest is the fact that the equilibrium field configurations can be sampled in a simple manner, thus providing a convenient means for specifying the initial conditions in dynamical simulations of the non-equilibrium relaxation of the chiral field. The corresponding correlation function is briefly considered and used to calculate the spectral strength of radiated pions. Finally, by propagating samples of initial configurations by the exact equation of motion, it has been ascertained that the treatment is sufficiently accurate to be of practical utility.Comment: 42 pages total, incl 18 figs using pstricks ([email protected]
    corecore