358 research outputs found

    Long-lived neutral-kaon flux measurement for the KOTO experiment

    Get PDF
    The KOTO (K0K^0 at Tokai) experiment aims to observe the CP-violating rare decay KL→π0ΜΜˉK_L \rightarrow \pi^0 \nu \bar{\nu} by using a long-lived neutral-kaon beam produced by the 30 GeV proton beam at the Japan Proton Accelerator Research Complex. The KLK_L flux is an essential parameter for the measurement of the branching fraction. Three KLK_L neutral decay modes, KL→3π0K_L \rightarrow 3\pi^0, KL→2π0K_L \rightarrow 2\pi^0, and KL→2ÎłK_L \rightarrow 2\gamma were used to measure the KLK_L flux in the beam line in the 2013 KOTO engineering run. A Monte Carlo simulation was used to estimate the detector acceptance for these decays. Agreement was found between the simulation model and the experimental data, and the remaining systematic uncertainty was estimated at the 1.4\% level. The KLK_L flux was measured as (4.183±0.017stat.±0.059sys.)×107(4.183 \pm 0.017_{\mathrm{stat.}} \pm 0.059_{\mathrm{sys.}}) \times 10^7 KLK_L per 2×10142\times 10^{14} protons on a 66-mm-long Au target.Comment: 27 pages, 16 figures. To be appeared in Progress of Theoretical and Experimental Physic

    Search for the decay KL0→3γK_L^0 \rightarrow 3\gamma

    Full text link
    We performed a search for the decay KL0→3ÎłK_L^0 \rightarrow 3\gamma with the E391a detector at KEK. In the data accumulated in 2005, no event was observed in the signal region. Based on the assumption of KL0→3ÎłK_L^0 \rightarrow 3\gamma proceeding via parity-violation, we obtained the single event sensitivity to be (3.23±0.14)×10−8(3.23\pm0.14)\times10^{-8}, and set an upper limit on the branching ratio to be 7.4×10−87.4\times10^{-8} at the 90% confidence level. This is a factor of 3.2 improvement compared to the previous results. The results of KL0→3ÎłK_L^0 \rightarrow 3\gamma proceeding via parity-conservation were also presented in this paper

    Search for the Pair Production of Dark Particles XX with KL0→XXK_L^0 \to XX, X→γγX \to \gamma\gamma

    Full text link
    We present the first search for the pair production of dark particles XX via KL0→XXK_L^0\to XX with XX decaying into two photons using the data collected by the KOTO experiment. No signal was observed in the mass range of 40 - 110~MeV/c2^2 and 210 - 240 MeV/c2^2. This sets upper limits on the branching fractions as B(KL0→XX)\mathcal{B}(K_L^0 \to XX) << (1-4) ×\times 10−7^{-7} and B(KL0→XX)\mathcal{B}(K_L^0 \to XX) << (1-2) ×\times 10−6^{-6} at the 90% confidence level for the two mass regions, respectively

    Measurement of the photon+b+b-jet production differential cross section in ppˉp\bar{p} collisions at \sqrt{s}=1.96~\TeV

    Get PDF
    We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is the photon transverse momentum. The b-quark jets are required to have pT>15 GeV and rapidity |y_jet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the Sherpa and Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.

    The Interplay between NF-kappaB and E2F1 Coordinately Regulates Inflammation and Metabolism in Human Cardiac Cells

    Get PDF
    Pyruvate dehydrogenase kinase 4 (PDK4) inhibition by nuclear factor-ÎșB (NF-ÎșB) is related to a shift towards increased glycolysis during cardiac pathological processes such as cardiac hypertrophy and heart failure. The transcription factors estrogen-related receptor-α (ERRα) and peroxisome proliferator-activated receptor (PPAR) regulate PDK4 expression through the potent transcriptional coactivator PPARÎł coactivator-1α (PGC-1α). NF-ÎșB activation in AC16 cardiac cells inhibit ERRα and PPARÎČ/ÎŽ transcriptional activity, resulting in reduced PGC-1α and PDK4 expression, and an enhanced glucose oxidation rate. However, addition of the NF-ÎșB inhibitor parthenolide to these cells prevents the downregulation of PDK4 expression but not ERRα and PPARÎČ/ÎŽ DNA binding activity, thus suggesting that additional transcription factors are regulating PDK4. Interestingly, a recent study has demonstrated that the transcription factor E2F1, which is crucial for cell cycle control, may regulate PDK4 expression. Given that NF-ÎșB may antagonize the transcriptional activity of E2F1 in cardiac myocytes, we sought to study whether inflammatory processes driven by NF-ÎșB can downregulate PDK4 expression in human cardiac AC16 cells through E2F1 inhibition. Protein coimmunoprecipitation indicated that PDK4 downregulation entailed enhanced physical interaction between the p65 subunit of NF-ÎșB and E2F1. Chromatin immunoprecipitation analyses demonstrated that p65 translocation into the nucleus prevented the recruitment of E2F1 to the PDK4 promoter and its subsequent E2F1-dependent gene transcription. Interestingly, the NF-ÎșB inhibitor parthenolide prevented the inhibition of E2F1, while E2F1 overexpression reduced interleukin expression in stimulated cardiac cells. Based on these findings, we propose that NF-ÎșB acts as a molecular switch that regulates E2F1-dependent PDK4 gene transcription
    • 

    corecore