37 research outputs found

    Stable isotopic evidence in support of active microbial methane cycling in low-temperature diffuse flow vents at 9°50’N East Pacific Rise

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 72 (2008): 2005-2023, doi:10.1016/j.gca.2008.01.025.A unique dataset from paired low- and high-temperature vents at 9°50’N East Pacific Rise provides insight into the microbiological activity in low-temperature diffuse fluids. The stable carbon isotopic composition of CH4 and CO2 in 9°50’N hydrothermal fluids indicates microbial methane production, perhaps coupled with microbial methane consumption. Diffuse fluids are depleted in 13C by ~10‰ in values of δ13C of CH4, and by ~0.55‰ in values of δ13C of CO2, relative to the values of the high-temperature source fluid (δ13C of CH4 = -20.1 ± 1.2‰, δ13C of CO2 = -4.08 ± 0.15‰). Mixing of seawater or thermogenic sources cannot account for the depletions in 13C of both CH4 and CO2 at diffuse vents relative to adjacent high-temperature vents. The substrate utilization and 13C fractionation associated with the microbiological processes of methanogenesis and methane oxidation can explain observed steady-state CH4 and CO2 concentrations and carbon isotopic compositions. A mass-isotope numerical box-model of these paired vent systems is consistent with the hypothesis that microbial methane cycling is active at diffuse vents at 9°50’N. The detectable 13C modification of fluid geochemistry by microbial metabolisms may provide a useful tool for detecting active methanogenesis.This work was supported by NSF grants from the division of Ocean Science’s MG&G and RIDGE programs

    Metagenomic Identification of Active Methanogens and Methanotrophs in Serpentinite Springs of the Voltri Massif, Italy

    Get PDF
    The production of hydrogen and methane by geochemical reactions associated with the serpentinization of ultramafic rocks can potentially support subsurface microbial ecosystems independent of the photosynthetic biosphere. Methanogenic and methanotrophic microorganisms are abundant in marine hydrothermal systems heavily influenced by serpentinization, but evidence for methane-cycling archaea and bacteria in continental serpentinite springs has been limited. This report provides metagenomic and experimental evidence for active methanogenesis and methanotrophy by microbial communities in serpentinite springs of the Voltri Massif, Italy. Methanogens belonging to family Methanobacteriaceae and methanotrophic bacteria belonging to family Methylococcaceae were heavily enriched in three ultrabasic springs (pH 12). Metagenomic data also suggest the potential for hydrogen oxidation, hydrogen production, carbon fixation, fermentation, and organic acid metabolism in the ultrabasic springs. The predicted metabolic capabilities are consistent with an active subsurface ecosystem supported by energy and carbon liberated by geochemical reactions within the serpentinite rocks of the Voltri Massif

    Biochemical Characterization of a Structure-Specific Resolving Enzyme from Sulfolobus islandicus Rod-Shaped Virus 2

    Get PDF
    Sulfolobus islandicus rod shaped virus 2 (SIRV2) infects the archaeon Sulfolobus islandicus at extreme temperature (70°C–80°C) and acidity (pH 3). SIRV2 encodes a Holliday junction resolving enzyme (SIRV2 Hjr) that has been proposed as a key enzyme in SIRV2 genome replication. The molecular mechanism for SIRV2 Hjr four-way junction cleavage bias, minimal requirements for four-way junction cleavage, and substrate specificity were determined. SIRV2 Hjr cleaves four-way DNA junctions with a preference for cleavage of exchange strand pairs, in contrast to host-derived resolving enzymes, suggesting fundamental differences in substrate recognition and cleavage among closely related Sulfolobus resolving enzymes. Unlike other viral resolving enzymes, such as T4 endonuclease VII or T7 endonuclease I, that cleave branched DNA replication intermediates, SIRV2 Hjr cleavage is specific to four-way DNA junctions and inactive on other branched DNA molecules. In addition, a specific interaction was detected between SIRV2 Hjr and the SIRV2 virion body coat protein (SIRV2gp26). Based on this observation, a model is proposed linking SIRV2 Hjr genome resolution to viral particle assembly

    Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition 357)

    Get PDF
    IODP Expedition 357 used two seabed drills to core 17 shallow holes at 9 sites across Atlantis Massif ocean core complex (Mid-Atlantic Ridge 30°N). The goals of this expedition were to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration in one borehole. The cores show highly heterogeneous rock types and alteration associated with changes in bulk rock chemistry that reflect multiple phases of magmatism, fluid-rock interaction and mass transfer within the detachment fault zone. Recovered ultramafic rocks are dominated by pervasively serpentinized harzburgite with intervals of serpentinized dunite and minor pyroxenite veins; gabbroic rocks occur as melt impregnations and veins. Dolerite intrusions and basaltic rocks represent the latest magmatic activity. The proportion of mafic rocks is volumetrically less than the amount of mafic rocks recovered previously by drilling the central dome of Atlantis Massif at IODP Site U1309. This suggests a different mode of melt accumulation in the mantle peridotites at the ridge-transform intersection and/or a tectonic transposition of rock types within a complex detachment fault zone. The cores revealed a high degree of serpentinization and metasomatic alteration dominated by talc-amphibole-chlorite overprinting. Metasomatism is most prevalent at contacts between ultramafic and mafic domains (gabbroic and/or doleritic intrusions) and points to channeled fluid flow and silica mobility during exhumation along the detachment fault. The presence of the mafic lenses within the serpentinites and their alteration to mechanically weak talc, serpentine and chlorite may also be critical in the development of the detachment fault zone and may aid in continued unroofing of the upper mantle peridotite/gabbro sequences. New technologies were also developed for the seabed drills to enable biogeochemical and microbiological characterization of the environment. An in situ sensor package and water sampling system recorded real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential (Eh), and temperature and during drilling and sampled bottom water after drilling. Systematic excursions in these parameters together with elevated hydrogen and methane concentrations in post-drilling fluids provide evidence for active serpentinization at all sites. In addition, chemical tracers were delivered into the drilling fluids for contamination testing, and a borehole plug system was successfully deployed at some sites for future fluid sampling. A major achievement of IODP Expedition 357 was to obtain microbiological samples along a west–east profile, which will provide a better understanding of how microbial communities evolve as ultramafic and mafic rocks are altered and emplaced on the seafloor. Strict sampling handling protocols allowed for very low limits of microbial cell detection, and our results show that the Atlantis Massif subsurface contains a relatively low density of microbial life

    Experimental carbonatite/graphite carbon isotope fractionation and carbonate/graphite geothermometry

    No full text
    Carbon isotope exchange between carbon-bearing high temperature phases records the carbon (re-) processing in the Earth's interior, where the vast majority of global carbon is stored. Redox reactions between carbonate phases and elemental carbon govern the mobility of carbon, which then can be traced by its isotopes. We determined the carbon isotope fractionation factor between graphite and a Na2CO3-CaCO3 melt at 900–1500 °C and 1 GPa; The failure to isotopically equilibrate preexisting graphite led us to synthesize graphite anew from organic material during the melting of the carbonate mixture. Graphite growth proceeds by (1) decomposition of organic material into globular amorphous carbon, (2) restructuring into nano-crystalline graphite, and (3) recrystallization into hexagonal graphite flakes. Each transition is accompanied by carbon isotope exchange with the carbonate melt. High-temperature (1200–1500 °C) equilibrium isotope fractionation with type (3) graphite can be described by (temperature T in K). As the experiments do not yield equilibrated bulk graphite at lower temperatures, we combined the ≥1200 °C experimental data with those derived from upper amphibolite and lower granulite facies carbonate-graphite pairs (Kitchen and Valley, 1995; Valley and O'Neil, 1981). This yields the general fractionation function usable as a geothermometer for solid or liquid carbonate at ≥600 °C. Similar to previous observations, lower-temperature experiments (≤1100 °C) deviate from equilibrium. By comparing our results to diffusion and growth rates in graphite, we show that at ≤1100 °C carbon diffusion is slower than graphite growth, hence equilibrium surface isotope effects govern isotope fractionation between graphite and carbonate melt and determine the isotopic composition of newly formed graphite. The competition between diffusive isotope exchange and growth rates requires a more careful interpretation of isotope zoning in graphite and diamond. Based on graphite crystallization rates and bulk isotope equilibration, a minimum diffusivity of Dgraphite = 2 × 10−17 m2s−1 for T > 1150 °C is required. This value is significantly higher than calculated from experimental carbon self-diffusion constants (∼1.6 × 10−29 m2 s−1) but in good agreement with the value calculated for mono-vacancy migration (∼2.8 × 10−16 m2 s−1).ISSN:0016-7037ISSN:1872-953
    corecore