1,512 research outputs found

    Influence of Dichromate Ions on Corrosion Processes on Pure Magnesium

    Get PDF
    The corrosion behavior of Mg is of interest because of its growing use as an alloy in the transportation industry and also because it is a major component of some intermetallic phases in Al alloys, such as the deleterious S (Al2CuMg)-phase found in AA2024-T3. Pure Mg corrodes rapidly in a chloride-containing solution and even dissolves in water if the surface hydroxide is damaged by scratching the surface, for example. Uniform dissolution is drastically reduced in NaCl solutions (from 0.01 to 0.5 M) with the addition of very dilute concentrations of dichromate (10-4 M). However, it is replaced by a strong localized attack in the form of fast filiform-like attack. On a large-grained sample with a defined defect structure, the attack can be seen to propagate at twin boundaries. Orientation imaging microscopy analysis found that corrosion was limited to planes near {0001} orientations with propagation being in prismatic directions. Auger electron spectroscopy analysis shows that interaction of chromate with the Mg hydroxide results in incorporation of reduced chromium ions in the hydroxide surface layer. Formation of a more resistant surface film could explain the very local nature of the corrosion in this case. The interaction between dichromate ions and Mg hydroxide can also explain the higher corrosion resistance of S-phase particles in chloride solutions containing dilute dichromate, although differences in the surface film formed compared to pure Mg are observed. Sputter-etching of the surface in order to assess the depth of the attack revealed that very hard or isolating corrosion products difficult to sputter are produced along the filiform path and that chromium compounds are not integrated in the corrosion products. Focused ion beam sectioning followed by scanning electron microscopy investigation of the sectioned area, demonstrates the presence of a continuous protective surface film. Adhesion between the Mg hydroxide and the metal is lost at the location of the corrosion filament, suggesting that the mechanism of propagation is similar to filiform corrosion under a coating. The depth of attack is a couple of micrometers with large cracks present within the corroded area that could induce severe surface damage.This work was supported by the Air Force Office of Scientific Research under contract no. F49620-96-1-0479

    Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    Get PDF
    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases

    The lagRST Model: A Turbulence Model for Non-Equilibrium Flows

    Get PDF
    This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced

    Assessment of Turbulent Shock-Boundary Layer Interaction Computations Using the OVERFLOW Code

    Get PDF
    The performance of two popular turbulence models, the Spalart-Allmaras model and Menter s SST model, and one relatively new model, Olsen & Coakley s Lag model, are evaluated using the OVERFLOWcode. Turbulent shock-boundary layer interaction predictions are evaluated with three different experimental datasets: a series of 2D compression ramps at Mach 2.87, a series of 2D compression ramps at Mach 2.94, and an axisymmetric coneflare at Mach 11. The experimental datasets include flows with no separation, moderate separation, and significant separation, and use several different experimental measurement techniques (including laser doppler velocimetry (LDV), pitot-probe measurement, inclined hot-wire probe measurement, preston tube skin friction measurement, and surface pressure measurement). Additionally, the OVERFLOW solutions are compared to the solutions of a second CFD code, DPLR. The predictions for weak shock-boundary layer interactions are in reasonable agreement with the experimental data. For strong shock-boundary layer interactions, all of the turbulence models overpredict the separation size and fail to predict the correct skin friction recovery distribution. In most cases, surface pressure predictions show too much upstream influence, however including the tunnel side-wall boundary layers in the computation improves the separation predictions

    Making sense of social pretense: The effect of the dyad, sex and language ability in a large observational study of children’s behaviors in a social pretend play context

    Get PDF
    Pretend play with peers is purportedly an important driver of social development in the preschool period, however, fundamental questions regarding the features of children’s pretend play with a peer, and the effect of the dyad for pretend play, have been overlooked. The current study undertook detailed behavioral coding of social pretend play in 134 pairs of 5-year-old children (54% boys) in order to address three main aims: (i) describe the duration and proportion of children engaging in key social pretend play behaviors, namely, calls for attention, negotiation (comprising role assignment and joint proposals) and enactment of pretend play, (ii) examine the effect of the dyad in influencing the occurrence of different social pretend play behaviors, and (iii) assess the independent and combined effect of individual child characteristics (i.e., language ability and sex) that may influence social pretend play behaviors beyond the influence of the dyad. Results demonstrated the overwhelming effect of the dyad in shaping children’s social pretend play behaviors, with language ability and sex explaining relatively little of the total variability in play behaviors. Results are discussed considering the contribution that this type of study can make to theories of associations between children’s social development and social pretend play.LEGO Foundatio

    Plasmodium yoelii 17XL infection up-regulates RANTES, CCR1, CCR3 and CCR5 expression, and induces ultrastructural changes in the cerebellum

    Get PDF
    BACKGROUND: Malaria afflicts 300–500 million people causing over 1 million deaths globally per year. The immunopathogenesis of malaria is mediated partly by co mplex cellular and immunomodulator interactions involving co-regulators such as cytokines and adhesion molecules. However, the role of chemokines and their receptors in malaria immunopathology remains unclear. RANTES (Regulated on Activation Normal T-Cell Expressed and Secreted) is a chemokine involved in the generation of inflammatory infiltrates. Recent studies indicate that the degradation of cell-cell junctions, blood-brain barrier dysfunction, recruitment of leukocytes and Plasmodium-infected erythrocytes into and occlusion of microvessels relevant to malaria pathogenesis are associated with RANTES expression. Additionally, activated lymphocytes, platelets and endothelial cells release large quantities of RANTES, thus suggesting a unique role for RANTES in the generation and maintenance of the malaria-induced inflammatory response. The hypothesis of this study is that RANTES and its corresponding receptors (CCR1, CCR3 and CCR5) modulate malaria immunopathogenesis. A murine malaria model was utilized to evaluate the role of this chemokine and its receptors in malaria. METHODS: The alterations in immunomodulator gene expression in brains of Plasmodium yoelii 17XL-infected mice was analysed using cDNA microarray screening, followed by a temporal comparison of mRNA and protein expression of RANTES and its corresponding receptors by qRT-PCR and Western blot analysis, respectively. Plasma RANTES levels was determined by ELISA and ultrastructural studies of brain sections from infected and uninfected mice was conducted. RESULTS: RANTES (p < 0.002), CCR1 (p < 0.036), CCR3 (p < 0.033), and CCR5 (p < 0.026) mRNA were significantly upregulated at peak parasitaemia and remained high thereafter in the experimental mouse model. RANTES protein in the brain of infected mice was upregulated (p < 0.034) compared with controls. RANTES plasma levels were significantly upregulated; two to three fold in infected mice compared with controls (p < 0.026). Some d istal microvascular endothelium in infected cerebellum appeared degraded, but remained intact in controls. CONCLUSION: The upregulation of RANTES, CCR1, CCR3, and CCR5 mRNA, and RANTES protein mediate inflammation and cellular degradation in the cerebellum during P. yoelii 17XL malaria

    The effect of lifelong learning on men's wages

    Get PDF
    This paper develops a model of earnings and applies this to an examination of the effect of lifelong learning on men’s wages. Using data from the British Household Panel Survey, a variant of the mover–stayer model is developed in which hourly wages are either taken from a stationary distribution (movers) or closely related to the hourly wage one year earlier (stayers). Mover–stayer status is not observed, and we therefore model wages using an endogenous switching regression, estimated by maximum likelihood. Methodologically, the results support the mover–stayer characterisation since the restrictions required for the simpler specifications popular in the literature are rejected. Substantively, simulation of the estimated model shows some statistically significant effects from acquiring qualifications of a higher level than those previously held, but not from acquiring qualifications of the same level

    A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)

    Get PDF
    We present a measurement of time-dependent CP-violating asymmetries in neutral B meson decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample consists of 29.7 fb1{\rm fb}^{-1} recorded at the Υ(4S)\Upsilon(4S) resonance and 3.9 fb1{\rm fb}^{-1} off-resonance. One of the neutral B mesons, which are produced in pairs at the Υ(4S)\Upsilon(4S), is fully reconstructed in the CP decay modes J/ψKS0J/\psi K^0_S, ψ(2S)KS0\psi(2S) K^0_S, χc1KS0\chi_{c1} K^0_S, J/ψK0J/\psi K^{*0} (K0KS0π0K^{*0}\to K^0_S\pi^0) and J/ψKL0J/\psi K^0_L, or in flavor-eigenstate modes involving D()π/ρ/a1D^{(*)}\pi/\rho/a_1 and J/ψK0J/\psi K^{*0} (K0K+πK^{*0}\to K^+\pi^-). The flavor of the other neutral B meson is tagged at the time of its decay, mainly with the charge of identified leptons and kaons. The proper time elapsed between the decays is determined by measuring the distance between the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample finds Δmd=0.516±0.016(stat)±0.010(syst)ps1\Delta m_d = 0.516\pm 0.016 {\rm (stat)} \pm 0.010 {\rm (syst)} {\rm ps}^{-1}. The value of the asymmetry amplitude sin2β\sin2\beta is determined from a simultaneous maximum-likelihood fit to the time-difference distribution of the flavor-eigenstate sample and about 642 tagged B0B^0 decays in the CP-eigenstate modes. We find sin2β=0.59±0.14(stat)±0.05(syst)\sin2\beta=0.59\pm 0.14 {\rm (stat)} \pm 0.05 {\rm (syst)}, demonstrating that CP violation exists in the neutral B meson system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
    corecore