327 research outputs found

    Small-Scale Interstellar Na I Structure Toward M92

    Get PDF
    We have used integral field echelle spectroscopy with the DensePak fiber-optic array on the KPNO WIYN telescope to observe the central 27" x 43" of the globular cluster M92 in the Na I D wavelength region at a spatial resolution of 4". Two interstellar Na I absorption components are evident in the spectra at LSR velocities of 0 km/s (Cloud 1) and -19 km/s (Cloud 2). Substantial strength variations in both components are apparent down to scales limited by the fiber-to-fiber separations. The derived Na I column densities differ by a factor of 4 across the Cloud 1 absorption map and by a factor of 7 across the Cloud 2 map. Using distance upper limits of 400 and 800 pc for Cloud 1 and Cloud 2, respectively, the absorption maps indicate structure in the ISM down to scales of 1600 and 3200 AU. The fiber-to-fiber Na I column density differences toward M92 are comparable to those found in a similar study of the ISM toward the globular cluster M15. Overall, the structures in the interstellar components toward M92 have significantly lower column densities than those toward M15. We interpret these low column density structures as small-scale turbulent variations in the gas and compare them to the larger-scale, higher column density variations toward M15, which may be the hallmarks of actual H I structures.Comment: 9 pages, 2 figures, accepted for publication in ApJ Letter

    On the Invariant Theory of Weingarten Surfaces in Euclidean Space

    Full text link
    We prove that any strongly regular Weingarten surface in Euclidean space carries locally geometric principal parameters. The basic theorem states that any strongly regular Weingarten surface is determined up to a motion by its structural functions and the normal curvature function satisfying a geometric differential equation. We apply these results to the special Weingarten surfaces: minimal surfaces, surfaces of constant mean curvature and surfaces of constant Gauss curvature.Comment: 16 page

    Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling

    Get PDF
    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid

    Integrating High Levels of Renewables in to the Lanai Electric Grid

    Get PDF
    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Sandia National Laboratory (Sandia) to assess the economic and technical feasibility of increasing the contribution of renewable energy sources on the island of Lanai with a stated goal of reaching 100% renewable energy. NREL and Sandia partnered with Castle & Cooke, Maui Electric Company (MECO), and SRA International to perform the assessment

    A Physics-based Investigation of Pt-salt Doped Carbon Nanotubes for Local Interconnects

    Get PDF
    We investigate, by combining physical and electrical measurements together with an atomistic-to-circuit modeling approach, the conductance of doped carbon nanotubes (CNTs) and their eligibility as possible candidate for next generation back-end-of-line (BEOL) interconnects. Ab-initio simulations predict a doping-related shift of the Fermi level, which reduces shell chirality variability and improves electrical conductance up to 90% by converting semiconducting shells to metallic. Circuit-level simulations predict up to 88% signal delay improvement with doped vs. pristine CNT. Electrical measurements of Pt-salt doped CNTs provide up to 50% of resistance reduction which is a milestone result for future CNT interconnect technology

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    HI spectra and column densities toward HVC and IVC probes

    Get PDF
    We show 21-cm line profiles in the direction of stars and extragalactic objects, lying projected on high- and intermediate-velocity clouds (HVCs and IVCs). About half of these are from new data obtained with the Effelsberg 100-m telescope, about a quarter are extracted from the Leiden-Dwingeloo Survey (LDS) and the remaining quarter were observed with other single-dish telescopes. HI column densities were determined for each HVC/IVC. Wakker (2001) (Paper I) uses these in combination with optical and ultraviolet high-resolution measurements to derive abundances. Here, an analysis is given of the difference and ratio of N(HI) as observed with a 9 arcmin versus a 35 arcmin beam. For HVCs and IVCs the ratio N(HI-9 arcmin)/N(HI-35 arcmin) lies in the range 0.2-2.5. For low-velocity gas this ratio ranges from 0.75 to 1.3 (the observed ratio is 0.85-1.4, but it appears that the correction for stray radiation is slightly off). The smaller range for the low-velocity gas may be caused by confusion in the line of sight, so that a low ratio in one component can be compensated by a high ratio in another -- for 11 low-velocity clouds fit by one component the distribution of ratios has a larger dispersion. Comparison with higher angular resolution data is possible for sixteen sightlines. Eight sightlines with HI data at 1 arcmin-2 arcmin resolution show a range of 0.75-1.25 for N(HI-2 arcmin)/N(HI-9 arcmin), while in eight other sightlines N(HI-Ly-alpha)/N(HI-9 arcmin) ranges from 0.74 to 0.98.Comment: To appear in the "Astrophysical Journal Supplement"; 45 pages; degraded figures (astro-ph restriction) - ask for good version
    corecore