350 research outputs found

    Molecular Identification And Conservation Status Of Sharks From The Fins Trade In Manado City North Sulawesi

    Get PDF
    Sharks are a group of cartilaginous fish that are vulnerable to overfishing.  Genetics approaches play an important role in shark conservation. Shark fishing has become the main activity of fishermen in several areas, including in North Sulawesi. This research is focused on the molecular aspects and conservation status of shark species obtained from the shark fin trade in Manado, North Sulawesi. COI gene was amplified using Fish BCL5 (for) and HCO219 (rev) primers. Nucleotide sequences of each sample were aligned with the closest sequences in the GenBank database using the BLAST (Basic Local Alignment and Search Tool) method. The conservation status of the shark species is carried through the IUCN (International Union for the conservation of nature red list) Red list website. Molecular identification results showed that the shark’s fins from Manado had high similarity with Carcharhinus falciformis (HM1 and HM2) and Carcharhinus melanopterus (HM3). According to IUCN red list data, the C. falciformis and C. melanopterus were categorized as vulnerable to extinction (VU).Keywords:  Molekuler; COI; Shark; Manado and IUCN Red list . AbstrakHiu merupakan kelompok ikan bertulang rawan yang sangat rentan terhadap dampak penangkapan secara berlebihan.  Informasi terkait genetik hiu  yang semakin terancam populasinya sangat berperan penting dalam upaya konservasi hiu. Penangkapan hiu telah menjadi aktivitas utama nelayan di beberapa daerah, termasuk di Sulawesi Utara. Penelitian ini difokuskan pada aspek  molekuler dan penentuan status konservasi spesies hiu menggunakan sampel sirip yang di dapatkan  dari perdagangan sirip  hiu, di kota Manado.  Amplifikasi gen COI dilakukan dengan menggunakan primer Fish BCL5 (for) dan HCO219 (rev). Sekuens nukleotida masing-masing sampel disejajarkan dengan nukleotida terdekat yang ada dalam database genbank menggunakan metode BLAST (Basic Local Aligment and Search Tool)  Penentuan status konservasi dilakukan melalui penelusuran spesies rujukan di situs IUCN (International Union for the Conservation of Nature) Red list. Hasil identifikasi molekuler menunjukan bahwa sampel sirip hiu dari  kota Manado  memiliki kemiripan yang tinggi dengan spesies : Carcharhinus falciformis  (HM1 dan HM2) dan C. melanopterus (HM3).  Menurut data IUCN Red list, C. falciformis dan C. Melanopterus merupakan jenis hiu dalam status konservasi rentan punah (VU). Kata Kunci: Molekuler; COI; hiu; Manado dan IUCN Red lis

    Monte Carlo Exploration of Warped Higgsless Models

    Full text link
    We have performed a detailed Monte Carlo exploration of the parameter space for a warped Higgsless model of electroweak symmetry breaking in 5 dimensions. This model is based on the SU(2)L×SU(2)R×U(1)BLSU(2)_L\times SU(2)_R\times U(1)_{B-L} gauge group in an AdS5_5 bulk with arbitrary gauge kinetic terms on both the Planck and TeV branes. Constraints arising from precision electroweak measurements and collider data are found to be relatively easy to satisfy. We show, however, that the additional requirement of perturbative unitarity up to the cut-off, 10\simeq 10 TeV, in WL+WLW_L^+W_L^- elastic scattering in the absence of dangerous tachyons eliminates all models. If successful models of this class exist, they must be highly fine-tuned.Comment: 26 pages, 7 figures; new fig and additional text adde

    Thymectomy and Radiation-Induced Type 1 Diabetes in Nonlymphopenic BB Rats

    Full text link
    Spontaneous type 1 diabetes in BB rats is dependent on the RT1(u) MHC haplotype and homozygosity for an allele at the Lyp locus, which is responsible for a peripheral T-lymphopenia. Genetic studies have shown that there are other, as yet unidentified, genetic loci contributing to diabetes susceptibility in this strain. BB rats carrying wild-type Lyp alleles are not lymphopenic and are resistant to spontaneous diabetes (DR). Here we show that thymectomy and exposure to one sublethal dose of gamma-irradiation (TX-R) at 4 weeks of age result in the rapid development of insulitis followed by diabetes in 100% of DR rats. Administration of CD4(+)45RC(-) T-cells from unmanipulated, syngeneic donors immediately after irradiation prevents the disease. Splenic T-cells from TX-R-induced diabetic animals adoptively transfer type 1 diabetes to T-deficient recipients. ACI, WF, WAG, BN, LEW, PVG, and PVG.RT1(u) strains are resistant to TX-R-induced insulitis/diabetes. Genetic analyses revealed linkage between regions on chromosomes 1, 3, 4, 6, 9, and 16, and TX-R-induced type 1 diabetes in a cohort of nonlymphopenic F(2) (Wistar Furth x BBDP) animals. This novel model of TX-R-induced diabetes in nonlymphopenic BB rats can be used to identify environmental and cellular factors that are responsible for the initiation of antipancreatic autoimmunity.

    Enrichment of homologs in insignificant BLAST hits by co-complex network alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homology is a crucial concept in comparative genomics. The algorithm probably most widely used for homology detection in comparative genomics, is BLAST. Usually a stringent score cutoff is applied to distinguish putative homologs from possible false positive hits. As a consequence, some BLAST hits are discarded that are in fact homologous.</p> <p>Results</p> <p>Analogous to the use of the genomics context in genome alignments, we test whether conserved functional context can be used to select candidate homologs from insignificant BLAST hits. We make a co-complex network alignment between complex subunits in yeast and human and find that proteins with an insignificant BLAST hit that are part of homologous complexes, are likely to be homologous themselves. Further analysis of the distant homologs we recovered using the co-complex network alignment, shows that a large majority of these distant homologs are in fact ancient paralogs.</p> <p>Conclusions</p> <p>Our results show that, even though evolution takes place at the sequence and genome level, co-complex networks can be used as circumstantial evidence to improve confidence in the homology of distantly related sequences.</p

    Cohesive versus Flexible Evolution of Functional Modules in Eukaryotes

    Get PDF
    Although functionally related proteins can be reliably predicted from phylogenetic profiles, many functional modules do not seem to evolve cohesively according to case studies and systematic analyses in prokaryotes. In this study we quantify the extent of evolutionary cohesiveness of functional modules in eukaryotes and probe the biological and methodological factors influencing our estimates. We have collected various datasets of protein complexes and pathways in Saccheromyces cerevisiae. We define orthologous groups on 34 eukaryotic genomes and measure the extent of cohesive evolution of sets of orthologous groups of which members constitute a known complex or pathway. Within this framework it appears that most functional modules evolve flexibly rather than cohesively. Even after correcting for uncertain module definitions and potentially problematic orthologous groups, only 46% of pathways and complexes evolve more cohesively than random modules. This flexibility seems partly coupled to the nature of the functional module because biochemical pathways are generally more cohesively evolving than complexes

    Beta Cells within Single Human Islets Originate from Multiple Progenitors

    Get PDF
    BACKGROUND: In both humans and rodents, glucose homeostasis is controlled by micro-organs called islets of Langerhans composed of beta cells, associated with other endocrine cell types. Most of our understanding of islet cell differentiation and morphogenesis is derived from rodent developmental studies. However, little is known about human islet formation. The lack of adequate experimental models has restricted the study of human pancreatic development to the histological analysis of different stages of pancreatic development. Our objective was to develop a new experimental model to (i) transfer genes into developing human pancreatic cells and (ii) validate gene transfer by defining the clonality of developing human islets. METHODS AND FINDINGS: In this study, a unique model was developed combining ex vivo organogenesis from human fetal pancreatic tissue and cell type-specific lentivirus-mediated gene transfer. Human pancreatic progenitors were transduced with lentiviruses expressing GFP under the control of an insulin promoter and grafted to severe combined immunodeficient mice, allowing human beta cell differentiation and islet morphogenesis. By performing gene transfer at low multiplicity of infection, we created a chimeric graft with a subpopulation of human beta cells expressing GFP and found both GFP-positive and GFP-negative beta cells within single islets. CONCLUSION: The detection of both labeled and unlabeled beta cells in single islets demonstrates that beta cells present in a human islet are derived from multiple progenitors thus providing the first dynamic analysis of human islet formation during development. This human transgenic-like tool can be widely used to elucidate dynamic genetic processes in human tissue formation

    Proinsulin Atypical Maturation and Disposal Induces Extensive Defects in Mouse Ins2+/Akita β-Cells

    Get PDF
    Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR), metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2+/Akita β-cells. We used T antigen-transformed Ins2+/Akita and control Ins2+/+ β-cells established from Akita and wild-type littermate mice. In Ins2+/Akita β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2+/Akita β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2+/Akita β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes

    Influences of obese (ob/ob) and diabetes (db/db) genotype mutations on lumber vertebral radiological and morphometric indices: Skeletal deformation associated with dysregulated systemic glucometabolism

    Get PDF
    BACKGROUND: Both diabetes and obesity syndromes are recognized to promote lumbar vertebral instability, premature osteodegeneration, exacerbate progressive osteoporosis and increase the propensity towards vertebral degeneration, instability and deformation in humans. METHODS: The influences of single-gene missense mutations, expressing either diabetes (db/db) or obese (ob/ob) metabolic syndromes on vertebral maturation and development in C57BL/KsJ mice were evaluated by radiological and macro-morphometric analysis of the resulting variances in osteodevelopment indices relative to control parameters between 8 and 16 weeks of age (syndrome onset @ 4 weeks), and the influences of low-dose 17-B-estradiol therapy on vertebral growth expression evaluated. RESULTS: Associated with the indicative genotypic obesity and hyper-glycemic/-insulinemic states, both db/db and ob/ob mutants demonstrated a significant (P ≤ 0.05) elongation of total lumbar vertebrae column (VC) regional length, and individual lumbar vertebrae (LV1-5) lengths, relative to control VC and LV parameters. In contrast, LV1-5 width indices were suppressed in db/db and ob/ob mutants relative to control LV growth rates. Between 8 and 16 weeks of age, the suppressed LV1-5 width indices were sustained in both genotype mutant groups relative to control osteomaturation rates. The severity of LV1-5 width osteosuppression correlated with the severe systemic hyperglycemic and hypertriglyceridemic conditions sustained in ob/ob and db/db mutants. Low-dose 17-B-estradiol therapy (E2-HRx: 1.0 ug/ 0.1 ml oil s.c/3.5 days), initiated at 4 weeks of age (i.e., initial onset phase of db/db and ob/ob expressions) re-established control LV 1–5 width indices without influencing VC or LV lengths in db/db groups. CONCLUSION: These data demonstrate that the abnormal systemic endometabolic states associated with the expression of db/db and ob/ob genomutation syndromes suppress LV 1–5 width osteomaturation rates, but enhanced development related VC and LV length expression, relative to control indices in a progressive manner similar to recognized human metabolic syndrome conditions. Therapeutic E2 modulation of the hyperglycemic component of diabetes-obesity syndrome protected the regional LV from the mutation-induced osteopenic width-growth suppression. These data suggest that these genotype mutation models may prove valuable for the evaluation of therapeutic methodologies suitable for the treatment of human diabetes- or obesity-influenced, LV degeneration-linked human conditions, which demonstrate amelioration from conventional replacement therapies following diagnosis of systemic syndrome-induced LV osteomaturation-associated deformations

    The “Perfect Storm” for Type 1 Diabetes: The Complex Interplay Between Intestinal Microbiota, Gut Permeability, and Mucosal Immunity

    Get PDF
    It is often stated that type 1 diabetes results from a complex interplay between varying degrees of genetic susceptibility and environmental factors. While agreeing with this principal, our desire is that this Perspectives article will highlight another complex interplay potentially associated with this disease involving facets related to the gut, one where individual factors that, upon their interaction with each another, form a “perfect storm” critical to the development of type 1 diabetes. This trio of factors includes an aberrant intestinal microbiota, a “leaky” intestinal mucosal barrier, and altered intestinal immune responsiveness. Studies examining the microecology of the gastrointestinal tract have identified specific microorganisms whose presence appears related (either quantitatively or qualitatively) to disease; in type 1 diabetes, a role for microflora in the pathogenesis of disease has recently been suggested. Increased intestinal permeability has also been observed in animal models of type 1 diabetes as well as in humans with or at increased-risk for the disease. Finally, an altered mucosal immune system has been associated with the disease and is likely a major contributor to the failure to form tolerance, resulting in the autoimmunity that underlies type 1 diabetes. Herein, we discuss the complex interplay between these factors and raise testable hypotheses that form a fertile area for future investigations as to the role of the gut in the pathogenesis and prevention of type 1 diabetes
    corecore