292 research outputs found

    Taming the beast: a revised classification of Cortinariaceae based on genomic data

    Get PDF
    © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, http://creativecommons.org/licenses/by/4.0/.Abstract: Family Cortinariaceae currently includes only one genus, Cortinarius, which is the largest Agaricales genus, with thousands of species worldwide. The species are important ectomycorrhizal fungi and form associations with many vascular plant genera from tropicals to arctic regions. Genus Cortinarius contains a lot of morphological variation, and its complexity has led many taxonomists to specialize in particular on infrageneric groups. The previous attempts to divide Cortinarius have been shown to be unnatural and the phylogenetic studies done to date have not been able to resolve the higher-level classification of the group above section level. Genomic approaches have revolutionized our view on fungal relationships and provide a way to tackle difficult groups. We used both targeted capture sequencing and shallow whole genome sequencing to produce data and to perform phylogenomic analyses of 75 single-copy genes from 19 species. In addition, a wider 5-locus analysis of 245 species, from the Northern and Southern Hemispheres, was also done. Based on our results, a classification of the family Cortinariaceae into ten genera—Cortinarius, Phlegmacium, Thaxterogaster, Calonarius, Aureonarius, Cystinarius, Volvanarius, Hygronarius, Mystinarius, and Austrocortinarius—is proposed. Seven genera, 10 subgenera, and four sections are described as new to science and five subgenera are introduced as new combinations in a new rank. In addition, 41 section names and 514 species names are combined in new genera and four lecto- and epitypes designated. The position of Stephanopus in suborder Agaricineae remains to be studied. Targeted capture sequencing is used for the first time in fungal taxonomy in Basidiomycetes. It provides a cost-efficient way to produce -omics data in species-rich groups. The -omics data was produced from fungarium specimens up to 21 years old, demonstrating the value of museum specimens in the study of the fungal tree of life. This study is the first family revision in Agaricales based on genomics data and hopefully many others will soon follow.Peer reviewedFinal Published versio

    Sustainability of cellulose dissolution and regeneration in 1,5-diazabicyclo[4.3.0]non-5-enium acetate : a batch simulation of the IONCELL-F process

    Get PDF
    The recyclability of 1,5-diazabicyclo[4.3.0] non-5-enium acetate ([DBNH][OAc]), as a direct dissolution solvent for cellulose, was evaluated during laboratory scale recycling trials. The main objective was to simulate the conditions of a spinning bath from a Lyocell-type air-gap spinning process, called the IONCELL-F process. The saline solution was then concentrated, recycled and reused as many times as possible before cellulose dissolution was no longer possible. The chemical compositions of the ionic liquid and pulp were recorded throughout the experiments. The results of the experiments showed that [DBNH][OAc] can be recycled from aqueous media with an average recovery rate of 95.6 wt% using basic laboratory equipment, without any further process intensification or optimisation. The recycling of the ionic liquid did not change the chemical composition or degree of polymerisation of the recovered pulp but the colour of the regenerated pulps gradually darkened as the recycling times increased. The ionic liquid was found to hydrolyse 6.0-13.6 mol% per cycle, under these conditions. The build-up of the hydrolysis product, 3-( aminopropyl)-2-pyrrolidonium acetate, killed the dissolution feature at between 30.6-45.6 wt% hydrolysis product. The enzymatic digestibility of the regenerated pulp samples was studied with both a monocomponent endoglucanase and a cellulase mixture. The amount of residual [DBNH][OAc] in the regenerated pulps was determined, by both NMR and capillary electrophoresis. Although hydrolysis of the ionic liquid occurs, this study clearly shows potential for industrial application, with appropriate process equipment and recycling conditions.Peer reviewe

    Radon backgrounds in the DEAP-1 liquid-argon-based Dark Matter detector

    Full text link
    The DEAP-1 \SI{7}{kg} single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the \mbox{DEAP-3600} Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The 222^{222}Rn decay rate in the liquid argon was measured to be between 16 and \SI{26}{\micro\becquerel\per\kilogram}. We found that the background spectrum near the region of interest for Dark Matter detection in the DEAP-1 detector can be described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse shape discrimination, and leakage of events from outside the fiducial volume due to imperfect position reconstruction. These backgrounds statistically account for all observed events, and they will be strongly reduced in the DEAP-3600 detector due to its higher light yield and simpler geometry

    The microstructure and technological properties of ultra high strength 1100MPa grade strip steel

    Get PDF
    The article describes the microstructure and the technological properties of a direct quenched ultrahighstrength strip steel with the minimum specific yield strength of 1100MPa. The microstructure of thislow carbon, Mn-Cr-Mo-Cu-Ni alloyed steel consists mainly of auto-tempered lath martensite. Due to thesophisticated thermo-mechanical controlled processing schedule, the martensite transformation takesplace from a fine and uniform austenite grain structure. State-of-the-art steelmaking and continuous castingoperations guarantee a good inclusion cleanness and low level of segregation. The steel has excellent impactand fracture toughness properties with respect to its ultra-high strength level. The determined transitiontemperature for 28J in Charpy-V test and fracture toughness characteristic temperature, T0, were below-100°C. The weldability tests indicated that the impact toughness of the heat affected zone (HAZ) is excellentand there is no significant softening in the HAZ or in the welded joint in the wide range of t8/5 cooling times.The steel allows crack-free bending with a minimum inside bending radius equal to 3 times material thicknessirrespective of the bending direction. In addition, the steel has a good resistance to atmospheric corrosion

    In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment

    Get PDF
    The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and is of significant interest for future dark matter and neutrino experiments where high signal yields are needed. We report on the methods developed for in-situ characterization and monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detailed discussion of typical measured single-photoelectron charge distributions, correlated noise (afterpulsing), dark noise, double, and late pulsing characteristics. The characterization is performed during the detector commissioning phase using laser light injected through a light diffusing sphere and during normal detector operation using LED light injected through optical fibres

    Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques

    Full text link
    Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.Comment: 16 pages, 16 figure

    Outcome from Complicated versus Uncomplicated Mild Traumatic Brain Injury

    Get PDF
    Objective. To compare acute outcome following complicated versus uncomplicated mild traumatic brain injury (MTBI) using neurocognitive and self-report measures. Method. Participants were 47 patients who presented to the emergency department of Tampere University Hospital, Finland. All completed MRI scanning, self-report measures, and neurocognitive testing at 3-4 weeks after injury. Participants were classified into the complicated MTBI or uncomplicated MTBI group based on the presence/absence of intracranial abnormality on day-of-injury CT scan or 3-4 week MRI scan. Results. There was a large statistically significant difference in time to return to work between groups. The patients with uncomplicated MTBIs had a median of 6.0 days (IQR = 0.75–14.75, range = 0–77) off work compared to a median of 36 days (IQR = 13.5–53, range = 3–315) for the complicated group. There were no significant differences between groups for any of the neurocognitive or self-report measures. There were no differences in the proportion of patients who (a) met criteria for ICD-10 postconcussional disorder or (b) had multiple low scores on the neurocognitive measures. Conclusion. Patients with complicated MTBIs took considerably longer to return to work. They did not perform more poorly on neurocognitive measures or report more symptoms, at 3-4 weeks after injury compared to patients with uncomplicated MTBIs.Hindaw

    Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1

    Get PDF
    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination (PSD) down to an electron-equivalent energy of 20 keV. In the surface dataset using a triple-coincidence tag we found the fraction of beta events that are misidentified as nuclear recoils to be <1.4×107<1.4\times 10^{-7} (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement with only a double-coincidence tag. The combined data set contains 1.23×1081.23\times10^8 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the electronic recoil contamination is <2.7×108<2.7\times10^{-8} (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe PSD parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approx. 101010^{-10} for an electron-equivalent energy threshold of 15 keV for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 104610^{-46} cm2^2, assuming negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic

    Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi
    corecore