19 research outputs found

    ZebIAT, an image analysis tool for registering zebrafish embryos and quantifying cancer metastasis

    Get PDF
    BACKGROUND: Zebrafish embryos have recently been established as a xenotransplantation model of the metastatic behaviour of primary human tumours. Current tools for automated data extraction from the microscope images are restrictive concerning the developmental stage of the embryos, usually require laborious manual image preprocessing, and, in general, cannot characterize the metastasis as a function of the internal organs. METHODS: We present a tool, ZebIAT, that allows both automatic or semi-automatic registration of the outer contour and inner organs of zebrafish embryos. ZebIAT provides a registration at different stages of development and an automatic analysis of cancer metastasis per organ, thus allowing to study cancer progression. The semi-automation relies on a graphical user interface. RESULTS: We quantified the performance of the registration method, and found it to be accurate, except in some of the smallest organs. Our results show that the accuracy of registering small organs can be improved by introducing few manual corrections. We also demonstrate the applicability of the tool to studies of cancer progression. CONCLUSIONS: ZebIAT offers major improvement relative to previous tools by allowing for an analysis on a per-organ or region basis. It should be of use in high-throughput studies of cancer metastasis in zebrafish embryos.Work supported by the Academy of Finland (ASR), Emil Aaltonen Foundation (EL), and the Finnish Funding Agency for Technology and Innovation (ASR,TA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S

    Cell-to-cell diversity in protein levels of a gene driven by a tetracycline inducible promoter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression in <it>Escherichia coli </it>is regulated by several mechanisms. We measured in single cells the expression level of a single copy gene coding for green fluorescent protein (GFP), integrated into the genome and driven by a tetracycline inducible promoter, for varying induction strengths. Also, we measured the transcriptional activity of a tetracycline inducible promoter controlling the transcription of a RNA with 96 binding sites for MS2-GFP.</p> <p>Results</p> <p>The distribution of GFP levels in single cells is found to change significantly as induction reaches high levels, causing the Fano factor of the cells' protein levels to increase with mean level, beyond what would be expected from a Poisson-like process of RNA transcription. In agreement, the Fano factor of the cells' number of RNA molecules target for MS2-GFP follows a similar trend. The results provide evidence that the dynamics of the promoter complex formation, namely, the variability in its duration from one transcription event to the next, explains the change in the distribution of expression levels in the cell population with induction strength.</p> <p>Conclusions</p> <p>The results suggest that the open complex formation of the tetracycline inducible promoter, in the regime of strong induction, affects significantly the dynamics of RNA production due to the variability of its duration from one event to the next.</p

    Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase

    Get PDF
    The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number

    Data from: Screen for mitochondrial DNA copy-number maintenance genes reveals essential role for ATP synthase

    No full text
    The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number
    corecore