79 research outputs found

    Gender and Bioethics Intertwined

    Full text link
    The article analyses the debate on egg donation in Norway using source material from the parliamentary debate of amendments to the Biotechnology Law. In both policy documents on bioethics and the Biotechnology Law, gender is not a spoken issue, but bringing egg and sperm directly to the fore highlights how gender is implicated in bioethics debates. Gender perceptions affect the understanding of `what egg and sperm may do' at the same time as the debate sets established perceptions of gender in motion. In Norway, gender equality is a valid and important premise within the general political debate. It is, however, contested as a valid argument in the context of egg donation, which therefore becomes a field of negotiations about the limits of equal opportunities. The article analyses the egg donation debate as a process of cultural co-production and asks how the Norwegian emphasis on gender equality influences the debate on egg donation and, vice versa, how debates of assisted reproductive technology (ART) reopen debates on gender in relation to reproduction and parenthood

    Enactive artificial intelligence: subverting gender norms in human-robot interaction

    Get PDF
    IntroductionThis paper presents Enactive Artificial Intelligence (eAI) as a gender-inclusive approach to AI, emphasizing the need to address social marginalization resulting from unrepresentative AI design.MethodsThe study employs a multidisciplinary framework to explore the intersectionality of gender and technoscience, focusing on the subversion of gender norms within Robot-Human Interaction in AI.ResultsThe results reveal the development of four ethical vectors, namely explainability, fairness, transparency, and auditability, as essential components for adopting an inclusive stance and promoting gender-inclusive AI.DiscussionBy considering these vectors, we can ensure that AI aligns with societal values, promotes equity and justice, and facilitates the creation of a more just and equitable society

    Prenatal iron exposure and childhood type 1 diabetes

    Get PDF
    Acknowledgements: We are grateful to all the participating families in Norway who take part in this on-going cohort study. We thank Dr. Maria Vistnes at Diakonhjemmet Hospital, Oslo, Norway for help with cytokine assays, PM Ueland and Ø Midttun at BEVITAL, Bergen, Norway, for neopterin and KTR assay, and Kathleen Gillespie at Bristol University, UK for confirmatory HLA genotyping. The Norwegian Mother and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, NIH/NIEHS (contract no N01-ES-75558), NIH/NINDS (grant no. 1 UO1 NS 047537-01 and grant no. 2 UO1 NS 047537-06A1). The sub-study was funded by a research grant from the Research Council of Norway. The Norwegian Childhood Diabetes Registry is financed by the South-Eastern Norway Regional Health Authority. Dr London was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences. Dr Størdal was supported by an unrestricted grant from Oak Foundation, Geneva, Switzerland.Peer reviewedPublisher PD

    The EULAR Study Group for Registers and Observational Drug Studies: comparability of the patient case mix in the European biologic disease modifying anti-rheumatic drug registers

    Get PDF
    Objective. Under the auspices of the European League Against Rheumatism (EULAR), a study group of investigators representing European biologic DMARD (bDMARD) registers was convened. The purpose of this initial assessment was to collect and compare a cross section of patient characteristics and collate information on the availability of potential confounders within these registers. Methods. Baseline characteristics of patients starting their first bDMARD in an arbitrary year (2008) for the treatment of RA, including demographic and disease characteristics, bDMARD drug details and co-morbidities, were collected and compared across 14 European bDMARD registers. Results. A total of 5320 patients were included. Half the registers had restricted recruitment to certain bDMARDs during the study year. All registers's collected data on age, gender, disease duration, seropositivity for IgM-RF and 28-joint DAS (DAS28). The mean DAS28 ranged from 4.2 to 6.6 and the mean HAQ from 0.8 to 1.9. Current smoking ranged from 9% to 34%. Nine registers reported co-morbidities with varying prevalence. Conclusion. In addition to demonstrating European-wide collaboration across rheumatology bDMARD registers, this assessment identified differences in prescribing patterns, recruitment strategies and data items collected. These differences need to be considered when applying strategies for combined analysis. The lack of a common data model across Europe calls for further work to harmonize data collection across register

    Genome editing in food and feed production – implications for risk assessment. Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment

    Get PDF
    The Norwegian Scientific Committee for Food and Environment (VKM) initiated this work to examine the extent to which organisms developed by genome-editing technologies pose new challenges in terms of risk assessment. This report considers whether the risk assessment guidance on genetically modified organisms, developed by the European Food Safety Authority (EFSA), can be applied to evaluate potential risks of organisms developed by genome editing. Background Gene technology has allowed for the transfer of genes between organisms and species, and thereby to design altered genotypes with novel traits, i.e. GMOs. A new paradigm started in the early 2000s with the development of genome-editing techniques. Unlike traditional genetic modification techniques resulting in insertion of foreign DNA fragments at random locations in the genome, the new genome-editing techniques additionally open for a few single nucleotide edits or short insertions/deletions at a targeted site in an organism’s genome. These new techniques can be applied to most types of organisms, including plants, animals and microorganisms of commercial interest. An important question is how the novel, genome-edited organisms should be evaluated with respect to risks to health and the environment. The European Court of Justice decided in 2018 to include genome-edited organisms in the GMO definition and hence in the regulatory system already in place. This implies that all products developed by genome-editing techniques must be risk-assessed within the existing regulatory framework for GMOs. The European and Norwegian regulatory frameworks regulate the production, import and placing on the market of food and feed containing, consisting of or produced from GMOs, as well as the release of GMOs into the environment. The assessment draws on guidance documents originally developed by EFSA for risk assessment of GMOs, which were drawn up mainly to address risks regarding insertion of transgenes. The new genome-editing techniques, however, provide a new continuum of organisms ranging from those only containing a minor genetic alteration to organisms containing insertion or deletion of larger genomic regions. Risk assessment of organisms developed by genome editing The present discourse on how new genome-editing techniques should be regulated lacks an analysis of whether risk assessment methodologies for GMOs are adequate for risk assessment of organisms developed through the use of the new genome-editing techniques. Therefore, this report describes the use of genome-editing techniques in food and feed production and discusses challenges in risk assessment with the regulatory framework. Specifically, this report poses the question as to whether the EFSA guidance documents are sufficient for evaluating risks to health and environment posed by genome-edited plants, animals and microorganisms. To address these questions, the report makes use of case examples relevant for Norway. These examples, intended for food and feed, include oilseed rape with a modified fatty acid profile, herbicide-tolerant and pest-resistant crops, sterile salmon, virus-resistant pigs and hornless cattle. The report considers all aspects of the stepwise approach as described in the EFSA guidance documents. Conclusions The inherent flexibility of the EFSA guidance makes it suitable to cover health and environmental risk assessments of a wide range of organisms with various traits and intended uses. Combined with the embedded case-by-case approach the guidance is applicable to genome-edited organisms. The evaluation of the guidance demonstrates that the parts of the health and environmental risk assessment concerned with novel traits (i.e. the phenotype of the organism) may be fully applied to all categories of genome-edited organisms. ............acceptedVersionpublishedVersio

    Genome editing in food and feed production – implications for risk assessment. Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment

    Get PDF
    The Norwegian Scientific Committee for Food and Environment (VKM) initiated this work to examine the extent to which organisms developed by genome-editing technologies pose new challenges in terms of risk assessment. This report considers whether the risk assessment guidance on genetically modified organisms, developed by the European Food Safety Authority (EFSA), can be applied to evaluate potential risks of organisms developed by genome editing. Background Gene technology has allowed for the transfer of genes between organisms and species, and thereby to design altered genotypes with novel traits, i.e. GMOs. A new paradigm started in the early 2000s with the development of genome-editing techniques. Unlike traditional genetic modification techniques resulting in insertion of foreign DNA fragments at random locations in the genome, the new genome-editing techniques additionally open for a few single nucleotide edits or short insertions/deletions at a targeted site in an organism’s genome. These new techniques can be applied to most types of organisms, including plants, animals and microorganisms of commercial interest. An important question is how the novel, genome-edited organisms should be evaluated with respect to risks to health and the environment. The European Court of Justice decided in 2018 to include genome-edited organisms in the GMO definition and hence in the regulatory system already in place. This implies that all products developed by genome-editing techniques must be risk-assessed within the existing regulatory framework for GMOs. The European and Norwegian regulatory frameworks regulate the production, import and placing on the market of food and feed containing, consisting of or produced from GMOs, as well as the release of GMOs into the environment. The assessment draws on guidance documents originally developed by EFSA for risk assessment of GMOs, which were drawn up mainly to address risks regarding insertion of transgenes. The new genome-editing techniques, however, provide a new continuum of organisms ranging from those only containing a minor genetic alteration to organisms containing insertion or deletion of larger genomic regions. Risk assessment of organisms developed by genome editing The present discourse on how new genome-editing techniques should be regulated lacks an analysis of whether risk assessment methodologies for GMOs are adequate for risk assessment of organisms developed through the use of the new genome-editing techniques. Therefore, this report describes the use of genome-editing techniques in food and feed production and discusses challenges in risk assessment with the regulatory framework. Specifically, this report poses the question as to whether the EFSA guidance documents are sufficient for evaluating risks to health and environment posed by genome-edited plants, animals and microorganisms. To address these questions, the report makes use of case examples relevant for Norway. These examples, intended for food and feed, include oilseed rape with a modified fatty acid profile, herbicide-tolerant and pest-resistant crops, sterile salmon, virus-resistant pigs and hornless cattle. The report considers all aspects of the stepwise approach as described in the EFSA guidance documents. Conclusions The inherent flexibility of the EFSA guidance makes it suitable to cover health and environmental risk assessments of a wide range of organisms with various traits and intended uses. Combined with the embedded case-by-case approach the guidance is applicable to genome-edited organisms. The evaluation of the guidance demonstrates that the parts of the health and environmental risk assessment concerned with novel traits (i.e. the phenotype of the organism) may be fully applied to all categories of genome-edited organisms. ............publishedVersio

    Genome editing in food and feed production – implications for risk assessment. Opinion of the Steering Committee of the Norwegian Scientific Committee for Food and Environment

    Get PDF
    Source at https://vkm.no/I denne rapporten vurderer Vitenskapskomiteen for mat og miljø (VKM) utfordringer knyttet til helse- og miljørisikovurdering av genomredigerte organismer til mat- og fôrproduksjon. VKM har gått gjennom veiledningen for risikovurdering av genmodifiserte organismer (GMO) som Den europeiske myndighet for næringsmiddeltrygghet (EFSA) har utviklet, og vurdert om veiledningen også kan brukes til å vurdere risiko ved organismer som er utviklet ved genomredigering. VKM har selv tatt initiativ til denne rapporten.The Norwegian Scientific Committee for Food and Environment (VKM) initiated this work to examine the extent to which organisms developed by genome-editing technologies pose new challenges in terms of risk assessment. This report considers whether the risk assessment guidance on genetically modified organisms, developed by the European Food Safety Authority (EFSA), can be applied to evaluate potential risks of organisms developed by genome editing
    corecore