456 research outputs found
Distribution and composition of thiotrophic mats in the hypoxic zone of the Black Sea (150–170 m water depth, Crimea Margin)
At the Black Sea chemocline, oxygen- and sulfide-rich waters meet and form a niche for thiotrophic pelagic bacteria. Here we investigated an area of the Northwestern Black Sea off Crimea close to the shelf break, where the chemocline reaches the seafloor at around 150–170 m water depth, to assess whether thiotrophic bacteria are favored in this zone. Seafloor video transects were carried out with the submersible JAGO covering 20 km2 on the region between 110 and 200 m depth. Around the chemocline we observed irregular seafloor depressions, covered with whitish mats of large filamentous bacteria. These comprised 25–55% of the seafloor, forming a belt of 3 km width around the chemocline. Cores from the mats obtained with JAGO showed higher accumulations of organic matter under the mats compared to mat-free sediments. The mat-forming bacteria were related to Beggiatoa-like large filamentous sulfur bacteria based on 16S rRNA sequences from the mat, and visual characteristics. The microbial community under the mats was significantly different from the surrounding sediments and enriched with taxa affiliated with polymer degrading, fermenting and sulfate reducing microorganisms. Under the mats, higher organic matter accumulation, as well as higher remineralization and radiotracer-based sulfate reduction rates were measured compared to outside the mat. Mat-covered and mat-free sediments showed similar degradability of the bulk organic matter pool, suggesting that the higher sulfide fluxes and subsequent development of the thiotrophic mats in the patches are consequences of the accumulation of organic matter rather than its qualitative composition. Our observations suggest that the key factors for the distribution of thiotrophic mat-forming communities near to the Crimean shelf break are hypoxic conditions that (i) repress grazers, (ii) enhance the accumulation and degradation of labile organic matter by sulfate-reducers, and (iii) favor thiotrophic filamentous bacteria which are adapted to exploit steep gradients in oxygen and sulfide availability; in addition to a specific seafloor topography which may relate to internal waves at the shelf break
Effects of fluctuating hypoxia on benthic oxygen consumption in the Black Sea (Crimean shelf)
The outer western Crimean shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic versus varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom-water oxygen concentrations ranged from normoxic (175 μmol O2 L−1) and hypoxic (< 63 μmol O2 L−1) or even anoxic/sulfidic conditions within a few kilometers' distance. Variations in oxygen concentrations between 160 and 10 μmol L−1 even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 15 mmol m−2 d−1 on average in the oxic zone, to 7 mmol m−2 d−1 on average in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising respiration of microorganisms and small meiofauna, were similar in oxic and hypoxic zones (on average 4.5 mmol m−2 d−1), but declined to 1.3 mmol m−2 d−1 in bottom waters with oxygen concentrations below 20 μmol L−1. Measurements and modeling of porewater profiles indicated that reoxidation of reduced compounds played only a minor role in diffusive oxygen uptake under the different oxygen conditions, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from nearly 100 % in the oxic zone, to 50 % in the oxic–hypoxic zone, to 10 % in the hypoxic–anoxic zone. Overall, the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations, than microbial and geochemical oxidation processes
Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea)
Bottom-water oxygen supply is a key factor governing the biogeochemistry and community composition of marine sediments. Whether it also determines carbon burial rates remains controversial. We investigated the effect of varying oxygen concentrations (170 to 0 μM O2) on microbial remineralization of organic matter in seafloor sediments and on community diversity of the northwestern Crimean shelf break. This study shows that 50% more organic matter is preserved in surface sediments exposed to hypoxia compared to oxic bottom waters. Hypoxic conditions inhibit bioturbation and decreased remineralization rates even within short periods of a few days. These conditions led to the accumulation of threefold more phytodetritus pigments within 40 years compared to the oxic zone. Bacterial community structure also differed between oxic, hypoxic, and anoxic zones. Functional groups relevant in the degradation of particulate organic matter, such as Flavobacteriia, Gammaproteobacteria, and Deltaproteobacteria, changed with decreasing oxygenation, and the microbial community of the hypoxic zone took longer to degrade similar amounts of deposited reactive matter. We conclude that hypoxic bottom-water conditions—even on short time scales—substantially increase the preservation potential of organic matter because of the negative effects on benthic fauna and particle mixing and by favoring anaerobic processes, including sulfurization of matter
Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches
To understand how ocean acidification (OA) influences sediment microbial communities, naturally CO2-rich sites are increasingly being used as OA analogues. However, the characterization of these naturally CO2-rich sites is often limited to OA-related variables, neglecting additional environmental variables that may confound OA effects. Here, we used an extensive array of sediment and bottom water parameters to evaluate pH effects on sediment microbial communities at hydrothermal CO2 seeps in Papua New Guinea. The geochemical composition of the sediment pore water showed variations in the hydrothermal signature at seep sites with comparable pH, allowing the identification of sites that may better represent future OA scenarios. At these sites, we detected a 60% shift in the microbial community composition compared with reference sites, mostly related to increases in Chloroflexi sequences. pH was among the factors significantly, yet not mainly, explaining changes in microbial community composition. pH variation may therefore often not be the primary cause of microbial changes when sampling is done along complex environmental gradients. Thus, we recommend an ecosystem approach when assessing OA effects on sediment microbial communities under natural conditions. This will enable a more reliable quantification of OA effects via a reduction of potential confounding effects
Report summarizing all information from WP2 relevant for the creation of an Environmental Best Practice for offshore CCS sites
Increased fluid flow activity in shallow sediments at the 3 km Long Hugin Fracture in the central North Sea
The North Sea hosts a wide variety of seafloor seeps that may be important for transfer of chemical species, such as methane, from the Earth's interior to its exterior. Here we provide geochemical and geophysical evidence for fluid flow within shallow sediments at the recently discovered, 3-km long Hugin Fracture in the Central North Sea. Although venting of gas bubbles was not observed, concentrations of dissolved methane were significantly elevated (up to six-times background values) in the water column at various locations above the fracture, and microbial mats that form in the presence of methane were observed at the seafloor. Seismic amplitude anomalies revealed a bright spot at a fault bend that may be the source of the water column methane. Sediment porewaters recovered in close proximity to the Hugin Fracture indicate the presence of fluids from two different shallow (<500m) sources: (i) a reduced fluid characterized by elevated methane concentrations and/or high levels of dissolved sulfide (up to 6 mmol L−1), and (ii) a low-chlorinity fluid (Cl ∼305 mmol L−1) that has low levels of dissolved methane and/or sulfide. The area of the seafloor affected by the presence of methane-enriched fluids is similar to the footprint of seepage from other morphological features in the North Sea
Phosphorus behavior in sediments during a sub-seabed CO\u3csub\u3e2\u3c/sub\u3e controlled release experiment
© 2015 Elsevier Ltd. The CO2 controlled release experiment Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS) assessed the impacts of potential CO2 leakage from sub-seabed carbon capture and storage reservoirs to the marine environment. During QICS, CO2 gas was released into shallow sediment in Ardmucknish Bay, Scotland, in the spring and summer of 2012. As part of this project, we investigated the effects of CO2 leakage on sedimentary phosphorus (P), an essential nutrient for marine productivity. We found no statistically significant effects during QICS, as the solid-phase P content in the sediment was constant before, during, and after exposure to CO2. However, laboratory experiments using marine sediment standard materials as well as QICS sediment revealed substantial differences among these different sediment types in their potential for P release during CO2 exposure. Employing the SEDEX sequential extraction technique to determine the sizes of the major P pools in the sediments, we showed that calcium-bound P can be easily released by CO2 exposure, whereas iron-bound P is a major sink of released P. The overall impacts of CO2 leakage on sediment P behavior appear to be low compared to natural variability
- …
