1,317 research outputs found

    Multi-colour fluorescence imaging of photosynthetic activity and plant stress

    Get PDF
    Imaging the four fluorescence bands of leaves, the red (F690_{690}) and far-red (F740_{740}) chlorophyll (Chl) fluorescence as well as the blue (F440_{440}) and green (F520_{520}) fluorescence of leaves and the corresponding fluorescence ratios is a fast and excellent nondestructive technique to detect the photosynthetic activity and capacity of leaves, of gradients over the leaf area as well as the effect of various strain and stress parameters on plants. This review primarily deals with the first and pioneering multi-colour fluorescence imaging results obtained since the mid-1990s in a cooperation with French colleagues in Strasbourg and in my laboratory in Karlsruhe. Together we introduced not only the joint imaging of the red and far-red Chl fluorescence but also of the blue and green fluorescence of leaves. The two instrumental setups composed for this purpose were (1) the Karlsruhe–Strasbourg UV-Laser Fluorescence Imaging System (Laser-FIS) and (2) the Karlsruhe Flash-Light Fluorescence Imaging System (FL-FIS). Essential results obtained with these instruments are summarized as well as the basic principles and characteristics of multi-colour fluorescence imaging. The great advantage of fluorescence imaging is that the fluorescence yield in the four fluorescence bands is sensed of several thousand up to 200,000 pixels per leaf area in one image. The multi-colour FIS technique allows to sense many physiological parameters and stress effects in plants at an early stage before a damage of leaves is visually detectable. Various examples of plant stress detection by the multi-colour FIS technique are given. Via imaging the Chl fluorescence ratio F690/F740 it is even possible to determine the Chl content of leaves. The FIS technique also allows to follow the successive uptake of diuron and loss of photosynthetic function and to screen the ripening of apples during storage. Particularly meaningful and of high statistical relevance are the fluorescence ratio images red/far-red (F690_{690}/ F740_{740}), blue/red (F440_{440}/F690_{690}), and blue/green (F440_{440}/F520_{520}) as well as images of the fluorescence decrease ratio RFd_{Fd}, which is an indicator of the net CO2_{2} assimilation rates of leaves

    My contact and cooperation with Govindjee over the last five decades: Chlorophyll fluorescence and Rebeiz Foundation

    Get PDF
    Govindjee and Hartmut Lichtenthaler have a very similar curriculum vitae. Both chose photosynthesis as research field and actively applied chlorophyll fluorescence. Their research was overlapping and complementary. On the occasion of Govindjee\u27s 88th anniversary in 2020, Hartmut Lichtenthaler gives a short retrospective on interactions and joint activities with Govindjee over the past five decades

    Contents of photosynthetic pigments and ratios of chlorophyll a/b and chlorophylls to carotenoids (a+b)/(x+c) in C4_{4} plants as compared to C3_{3} plants

    Get PDF
    The content of chlorophylls (Chl) (a+b), total carotenoids (x+c), and the pigment ratios of Chl a/b and Chls to carotenoids (a+b)/(x+c) of green leaves of five C4_{4} plants were determined and compared to those of C3_{3} plants. The C4_{4} plants were: Pacific and Chinese silvergrass (Miscanthus floridulus and Miscanthus sinensis), sugar cane (Saccharum officinarum) as well as feed and sugar maize (Zea mays). The three C3_{3} plants were beech, ginkgo, and oak. C4_{4} plants possess higher values for the ratio Chl a/b (3.4-4.5) as compared to the C3_{3} plants (2.6-3.3). Sugar maize had the highest values for Chl a/b (4.04-4.70) and exceptionally high contents of total carotenoids and consequently lower values for the ratio of (a+b)/(x+c) (mean: 3.75 ± 0.6). During autumnal senescence also C4_{4} plants showed a faster decline of Chl b as compared to Chl a yielding high values for Chl a/b of 6 to 8. Chlorophylls declined faster than carotenoids yielding low (a+b)/(x+c) values below 1.0

    Strong increase of photosynthetic pigments and leaf size in a pruned Ginkgo biloba tree

    Get PDF
    A 50-year-old solitary, sun-exposed ginkgo tree had strongly been pruned in the fall of 2021. Very few buds for the formation of new leaves, twigs, and branches were left over. In spring 2022, these few remaining buds responded with the formation of a different leaf type. These leaves were 2.7 times larger and also thicker than in the years before. In addition, the mean content of total chlorophylls [Chl (a+b)] per leaf area unit of dark-green leaves was 1.45, those of green leaves two times higher as compared to the years leaves as compared to 435 to 770 mg m-2 in leaves of other trees. The higher values for Chl (a+b) and total carotenoid content showed up also on a fresh and dry mass basis. Thus, with the formation of a new, larger leaf type by changes in morphology (leaf size and thickness) and the increase of photosynthetic pigments, the pruned ginkgo tree was able to compensate for the much lower number of leaves and photosynthetic units

    Excitated state properties of 20-chloro-chlorophyll a

    Get PDF
    The excited-state and lasing properties of 20-chloro-chlorophyll a in ether solution were compared to those of chlorophyll a. Desactivation parameters and cross-sections were obtained from non-linear absorption spectroscopy in combination with a physico-mathematical methods package. The Cl substituent at C-20 (1) increases both intersystem crossing and internal conversion, (2) produces a blue-shift of the S1 absorption spectrum, and (3) leads to pronounced photochemistry

    BACE inhibitor treatment of mice induces hyperactivity in a Seizure-related gene 6 family dependent manner without altering learning and memory

    Get PDF
    BACE inhibitors, which decrease BACE1 (beta -secretase 1) cleavage of the amyloid precursor protein, are a potential treatment for Alzheimer's disease. Clinical trials using BACE inhibitors have reported a lack of positive effect on patient symptoms and, in some cases, have led to increased adverse events, cognitive worsening and hippocampal atrophy. A potential drawback of this strategy is the effect of BACE inhibition on other BACE1 substrates such as Seizure-related gene 6 (Sez6) family proteins which are known to have a role in neuronal function. Mice were treated with an in-diet BACE inhibitor for 4-8 weeks to achieve a clinically-relevant level of amyloid-beta 40 reduction in the brain. Mice underwent behavioural testing and postmortem analysis of dendritic spine number and morphology with Golgi-Cox staining. Sez6 family triple knockout mice were tested alongside wild-type mice to identify whether any effects of the treatment were due to altered cleavage of Sez6 family proteins. Wild-type mice treated with BACE inhibitor displayed hyperactivity on the elevated open field, as indicated by greater distance travelled, but this effect was not observed in treated Sez6 triple knockout mice. BACE inhibitor treatment did not lead to significant changes in spatial or fear learning, reference memory, cognitive flexibility or anxiety in mice as assessed by the Morris water maze, context fear conditioning, or light-dark box tests. Chronic BACE inhibitor treatment reduced the density of mushroom-type spines in the somatosensory cortex, regardless of genotype, but did not affect steady-state dendritic spine density or morphology in the CA1 region of the hippocampus. Chronic BACE inhibition for 1-2 months in mice led to increased locomotor output but did not alter memory or cognitive flexibility. While the mechanism underlying the treatment-induced hyperactivity is unknown, the absence of this response in Sez6 triple knockout mice indicates that blocking ectodomain shedding of Sez6 family proteins is a contributing factor. In contrast, the decrease in mature spine density in cortical neurons was not attributable to lack of shed Sez6 family protein ectodomains. Therefore, other BACE1 substrates are implicated in this effect and, potentially, in the cognitive decline in longer-term chronically treated patients

    Determination of the Proteolytic Cleavage Sites of the Amyloid Precursor-Like Protein 2 by the Proteases ADAM10, BACE1 and γ-Secretase

    Get PDF
    Regulated intramembrane proteolysis of the amyloid precursor protein (APP) by the protease activities α-, β- and γ-secretase controls the generation of the neurotoxic amyloid β peptide. APLP2, the amyloid precursor-like protein 2, is a homolog of APP, which shows functional overlap with APP, but lacks an amyloid β domain. Compared to APP, less is known about the proteolytic processing of APLP2, in particular in neurons, and the cleavage sites have not yet been determined. APLP2 is cleaved by the β-secretase BACE1 and additionally by an α-secretase activity. The two metalloproteases ADAM10 and ADAM17 have been suggested as candidate APLP2 α-secretases in cell lines. Here, we used RNA interference and found that ADAM10, but not ADAM17, is required for the constitutive α-secretase cleavage of APLP2 in HEK293 and SH-SY5Y cells. Likewise, in primary murine neurons knock-down of ADAM10 suppressed APLP2 α-secretase cleavage. Using mass spectrometry we determined the proteolytic cleavage sites in the APLP2 sequence. ADAM10 was found to cleave APLP2 after arginine 670, whereas BACE1 cleaves after leucine 659. Both cleavage sites are located in close proximity to the membrane. γ-secretase cleavage was found to occur at different peptide bonds between alanine 694 and valine 700, which is close to the N-terminus of the predicted APLP2 transmembrane domain. Determination of the APLP2 cleavage sites enables functional studies of the different APLP2 ectodomain fragments and the production of cleavage-site specific antibodies for APLP2, which may be used for biomarker development

    Pink‐ and orange‐pigmented Planctomycetes produce saproxanthin‐type carotenoids including a rare C45 carotenoid

    Get PDF
    Planctomycetes, are ubiquitous and environmentally important Gram-negative aquatic bacteria with key roles in global carbon and nitrogen cycles. Many planctomycetal species have a pink or orange colour and have been suggested to produce carotenoids. Potential applications as food colorants or anti-oxidants have been proposed. Hitherto, the planctomycetal metabolism is largely unexplored and the strain pigmentation has not been identified. For a holistic view on the complex planctomycetal physiology we analyzed carotenoid profiles of the pink-pigmented strain Rhodopirellula rubra LF2T and of the orange strain Rubinisphaera brasiliensis Gr7. During LC-MS/MS analysis of culture extracts we were able to identify three saproxanthin-type carotenoids including a rare C45 carotenoid. These compounds, saproxanthin, dehydroflexixanthin and 2’-isopentenyldehydrosaproxanthin, derive from the common carotenoid precursor lycopene and are characterized by related end groups, namely a 3-hydroxylated β-carotene-like cyclohexene ring as one end group and simple hydration on the other end of the molecule. Based on the observed molecule structure we present putative pathways for their biosynthesis. Results support Planctomycetes as a promising, yet mostly untapped source of carotenoids

    Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant

    Get PDF
    Lead (Pb) is a ubiquitous environmental pollutant capable to induce various morphological, physiological, and biochemical functions in plants. Only few publications focus on the influence of Pb speciation both on its phytoavailability and phytotoxicity. Therefore, Pb toxicity (in terms of lipid peroxidation, hydrogen peroxide induction, and photosynthetic pigments contents) was studied in Vicia faba plants in relation with Pb uptake and speciation. V. faba seedlings were exposed to Pb supplied as Pb(NO3)2 or complexed by two fulvic acids (FAs), i.e. Suwannee River fulvic acid (SRFA) and Elliott Soil fulvic acid (ESFA), for 1, 12, and 24 h under controlled hydroponic conditions. For both FAs, Pb uptake and translocation by Vicia faba increased at low level (5 mg l−1), whereas decreased at high level of application (25 mg l−1). Despite the increased Pb uptake with FAs at low concentrations, there was no influence on the Pb toxicity to the plants. However, at high concentrations, FAs reduced Pb toxicity by reducing its uptake. These results highlighted the role of the dilution factor for FAs reactivity in relation with structure; SRFA was more effective than ESFA in reducing Pb uptake and alleviating Pb toxicity to V. faba due to comparatively strong binding affinity for the heavy metal
    corecore