241 research outputs found
Using Expert Models in Human Reliability Analysis - A Dependence Assessment Method Based on Fuzzy Logic
International audienceIn human reliability analysis (HRA), dependence analysis refers to assessing the influence of the failure of the operators to perform one task on the failure probabilities of subsequent tasks. A commonly used approach is the technique for human error rate prediction (THERP). The assessment of the dependence level in THERP is a highly subjective judgment based on general rules for the influence of five main factors. A frequently used alternative method extends the THERP model with decision trees. Such trees should increase the repeatability of the assessments but they simplify the relationships among the factors and the dependence level. Moreover, the basis for these simplifications and the resulting tree is difficult to trace. The aim of this work is a method for dependence assessment in HRA that captures the rules used by experts to assess dependence levels and incorporates this knowledge into an algorithm and software tool to be used by HRA analysts. A fuzzy expert system (FES) underlies the method. The method and the associated expert elicitation process are demonstrated with a working model. The expert rules are elicited systematically and converted into a traceable, explicit, and computable model. Anchor situations are provided as guidance for the HRA analyst's judgment of the input factors. The expert model and the FES-based dependence assessment method make the expert rules accessible to the analyst in a usable and repeatable way, with an explicit and traceable basis
Educational cosmic ray experiments with Geiger counters
Experiments concerning the physics of cosmic rays offer to high-school teachers and students a relatively easy approach to the field of research in high energy physics. The detection of cosmic rays does not necessarily require the use of sophisticated equipment, and various properties of the cosmic radiation can be observed and analysed even by the use of a single Geiger counter. Nevertheless, the variety of such kind of experiments and the results obtained are limited because of the inclusive nature of these measurements. A significant improvement may be obtained when two or more Geiger counters are operated in coincidence. In this paper we discuss the potential of performing educational cosmic ray experiments with Geiger counters. In order to show also the educational value of coincidence techniques, preliminary results of cosmic ray experiments carried out by the use of a simple coincidence circuit are briefly discussed
Molecular signatures associated with the treatment of triple-negative MDA-MB231 breast cancer cells with the histone deacetylase inhibitors JAHA and SAHA
Jay Amin Hydroxamic Acid (JAHA; N8-ferrocenylN1-hydroxy-octanediamide) is a ferrocene-containing analogue of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA). JAHA’s cytotoxic activity on MDA-MB231 triple negative breast cancer (TNBC) cells at 72 h has been previously demonstrated with an IC50 of 8.45 M. JAHA’s lethal effect was found linked to perturbations of cell cycle, mitochondrial activity, signal transduction and autophagy mechanisms. In order to glean novel insights on how MDA-MB231 breast cancer cells respond to the cytotoxic effect induced by JAHA, and to compare the biological effect with the related compound SAHA, we have employed a combination of differential display-PCR, proteome analysis and COMET assay techniques and shown some differences in the molecular signature profiles induced by exposure to either HDACis. In particular, in contrast to the more numerous and diversified changes induced by SAHA, JAHA has shown a more selective impact on expression of molecular signatures involved in anti-oxidant activity and DNA repair. Besides expanding the biological knowledge of the effect exerted by the modifications in compound structures on cell phenotype, the molecular elements put in evidence in our study may provide promising targets for therapeutic interventions on TNBCs
Arterially Perfused Neurosphere-Derived Cells Distribute Outside the Ischemic Core in a Model of Transient Focal Ischemia and Reperfusion In Vitro
BACKGROUND: Treatment with neural stem cells represents a potential strategy to improve functional recovery of post-ischemic cerebral injury. The potential benefit of such treatment in acute phases of human ischemic stroke depends on the therapeutic viability of a systemic vascular delivery route. In spite of the large number of reports on the beneficial effects of intracerebral stem cells injection in experimental stroke, very few studies demonstrated the effectiveness of the systemic intravenous delivery approach. METODOLOGY/PRINCIPAL FINDINGS: We utilized a novel in vitro model of transient focal ischemia to analyze the brain distribution of neurosphere-derived cells (NCs) in the early 3 hours that follow transient occlusion of the medial cerebral artery (MCA). NCs obtained from newborn C57/BL6 mice are immature cells with self-renewal properties that could differentiate into neurons, astrocytes and oligodendrocytes. MCA occlusion for 30 minutes in the in vitro isolated guinea pig brain preparation was followed by arterial perfusion with 1x10(6) NCs charged with a green fluorescent dye, either immediately or 60 minutes after reperfusion onset. Changes in extracellular pH and K(+) concentration during and after MCAO were measured through ion-sensitive electrodes. CONCLUSION/SIGNIFICANCE: It is demonstrated that NCs injected through the vascular system do not accumulate in the ischemic core and preferentially distribute in non-ischemic areas, identified by combined electrophysiological and morphological techniques. Direct measurements of extracellular brain ions during and after MCA occlusion suggest that anoxia-induced tissue changes, such as extracellular acidosis, may prevent NCs from entering the ischemic area in our in vitro model of transitory focal ischemia and reperfusion suggesting a role played by the surrounding microenviroment in driving NCs outside the ischemic core. These findings strongly suggest that the potential beneficial effect of NCs in experimental focal brain ischemia is not strictly dependent on their homing into the ischemic region, but rather through a bystander mechanism possibly mediated by the release of neuroprotective factors in the peri-infarct region
Performance of ALICE pixel prototypes in high energy beams
The two innermost layers of the ALICE inner tracking system are instrumented
with silicon pixel detectors. Single chip assembly prototypes of the ALICE
pixels have been tested in high energy particle beams at the CERN SPS.
Detection efficiency and spatial precision have been studied as a function of
the threshold and the track incidence angle. The experimental method, data
analysis and main results are presented.Comment: 10 pages, 9 figures, contribution to PIX2005 Workshop, Bonn
(Germany), 5-8 September 200
Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector
The silicon pixel detector (SPD) of the ALICE experiment in preparation at
the Large Hadron Collider (LHC) at CERN is designed to provide the precise
vertex reconstruction needed for measuring heavy flavor production in heavy ion
collisions at very high energies and high multiplicity. The SPD forms the
innermost part of the Inner Tracking System (ITS) which also includes silicon
drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD
have been tested at the CERN SPS using high energy proton/pion beams in 2002
and 2003. We report on the experimental determination of the spatial precision.
We also report on the first combined beam test with prototypes of the other ITS
silicon detector technologies at the CERN SPS in November 2004. The issue of
SPD simulation is briefly discussed.Comment: 4 pages, 5 figures, prepared for proceedings of 7th International
Position Sensitive Detectors Conference, Liverpool, Sept. 200
Performance of prototypes for the ALICE electromagnetic calorimeter
The performance of prototypes for the ALICE electromagnetic sampling
calorimeter has been studied in test beam measurements at FNAL and CERN. A
array of final design modules showed an energy resolution of about
11% / 1.7 % with a uniformity of the response
to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV.
The electromagnetic shower position resolution was found to be described by 1.5
mm 5.3 mm /. For an electron identification
efficiency of 90% a hadron rejection factor of was obtained.Comment: 10 pages, 10 figure
International Veterinary Epilepsy Task Force Consensus Proposal: Outcome of therapeutic interventions in canine and feline epilepsy
Common criteria for the diagnosis of drug resistance and the assessment of outcome are needed urgently as a prerequisite for standardized evaluation and reporting of individual therapeutic responses in canine epilepsy. Thus, we provide a proposal for the definition of drug resistance and partial therapeutic success in canine patients with epilepsy. This consensus statement also suggests a list of factors and aspects of outcome, which should be considered in addition to the impact on seizures. Moreover, these expert recommendations discuss criteria which determine the validity and informative value of a therapeutic trial in an individual patient and also suggest the application of individual outcome criteria. Agreement on common guidelines does not only render a basis for future optimization of individual patient management, but is also a presupposition for the design and implementation of clinical studies with highly standardized inclusion and exclusion criteria. Respective standardization will improve the comparability of findings from different studies and renders an improved basis for multicenter studies. Therefore, this proposal provides an in-depth discussion of the implications of outcome criteria for clinical studies. In particular ethical aspects and the different options for study design and application of individual patient-centered outcome criteria are considered
Treatment of refractory epilepsy with natalizumab in a patient with multiple sclerosis. Case report
Background.
Multiple sclerosis (MS) is considered an autoimmune disease of the central nervous system and therapeutic inhibition of leukocyte migration with natalizumab, an anti-alpha4 integrin antibody, is highly effective in patients with MS. Recent studies performed in experimental animal models with relevance to human disease suggested a key role for blood-brain barrier damage and leukocyte trafficking mechanisms also in the pathogenesis of epilepsy. In addition, vascular alterations and increased leukocyte accumulation into the brain were recently documented in patients with refractory epilepsy independently on the disease etiology.
Case report.
Here we describe the clinical course of a 24-year-old patient with MS in whom abrupt tonic-clonic generalized seizures manifested at disease onset. Although MS had a more favorable course, treatment with glatiramer acetate and antiepileptic drugs for 7 years had no control on seizure generation and the patient developed severe refractory epilepsy. Interestingly, generalized seizures preceded new MS relapses suggesting that seizure activity may contribute to MS worsening creating a positive feedback loop between the two disease conditions. Notably, treatment with natalizumab for 12 months improved MS condition and led to a dramatic reduction of seizures.
Conclusion.
Our case report suggests that inhibition of leukocyte adhesion may represent a new potential therapeutic approach in epilepsy and complement the traditional therapy with anti-epileptic drugs
- …