243 research outputs found

    Apoptosis-inducing natural products found in utero during murine pregnancy

    Get PDF
    AbstractBackground: Hormones, lipids, vitamins and other biologically active small molecules can be removed from animal tissues by extraction with organic solvents. These compounds can have dramatic effects on cultured cells and the characterization of such compounds can lead to the discovery of new functions for known molecules, or even to the discovery of previously unknown compounds.Results: Organic-soluble compounds in 17.5-day-old mouse embryos were removed with tert-butylmethylether and found to induce apoptosis in T-antigen-transformed Jurkat T cells. These embryonic extracts were fractionated and their apoptosis-inducing components were identified as a mixture of polyunsaturated fatty acids, including arachidonic, docosatetraenoic and docosahexaenoic acids. Docosatetraenoic acid was the most potent apoptosis inducer with an effective dose (ED50) of 30 μM.Conclusions: A family of polyunsaturated fatty acids is shown to be abundant in utero during pregnancy. Members of this family are able to induce cleavage of poly(ADP)ribose polymerase, and ultimately to induce apoptosis, in T-antigen-transformed Jurkat T cells. Free radical scavengers, including phenol and benzyl alcohol, block the apoptosis-inducing properties of these polyunsaturated fatty acids; this is consistent with a lipid peroxidation mechanism involving formation of hydroperoxy fatty acids

    Inaugural BMC Ecology and Evolution image competition: the winning images

    Get PDF
    The inaugural BMC Ecology and Evolution image competition attracted entries from talented ecologists and evolutionary biologists worldwide. Together, these photos beautifully capture biodiversity, how it arose and why we should conserve it. This editorial celebrates the winning images as selected by the Editor of BMC Ecology and Evolution and senior members of the journal’s editorial board

    Piriform spider silk sequences reveal unique repetitive elements.

    Get PDF
    Orb-weaving spider silk fibers are assembled from very large, highly repetitive proteins. The repeated segments contain, in turn, short, simple, and repetitive amino acid motifs that account for the physical and mechanical properties of the assembled fiber. Of the six orb-weaver silk fibroins, the piriform silk that makes the attachment discs, which lashes the joints of the web and attaches dragline silk to surfaces, has not been previously characterized. Piriform silk protein cDNAs were isolated from phage libraries of three species: A. trifasciata, N. claVipes, and N. cruentata. The deduced amino acid sequences from these genes revealed two new repetitive motifs: an alternating proline motif, where every other amino acid is proline, and a glutamine-rich motif of 6-8 amino acids. Similar to other spider silk proteins, the repeated segments are large (>200 amino acids) and highly homogenized within a species. There is also substantial sequence similarity across the genes from the three species, with particular conservation of the repetitive motifs. Northern blot analysis revealed that the mRNA is larger than 11 kb and is expressed exclusively in the piriform glands of the spider. Phylogenetic analysis of the C-terminal regions of the new proteins with published spidroins robustly shows that the piriform sequences form an ortholog group

    Molecular Characterization of a isoenzyme of the targeting peptide degrading protease, PreP2- catalysis, subcellular localization, expression and evolution

    Get PDF
    We have previously identified a zinc metalloprotease involved in the degradation of mitochondrial and chloroplast targeting peptides, the presequence protease (PreP). In the Arabidopsis thaliana genomic database, there are two genes that correspond to the protease, the zinc metalloprotease (AAL90904) and the putative zinc metalloprotease (AAG13049). We have named the corresponding proteins AtPreP1 and AtPreP2, respectively. AtPreP1 and AtPreP2 show significant differences in their targeting peptides and the proteins are predicted to be localized in different compartments. AtPreP1 was shown to degrade both mitochondrial and chloroplast targeting peptides and to be dual targeted to both organelles using an ambiguous targeting peptide. Here, we have overexpressed, purified and characterized proteolytic and targeting properties of AtPreP2. AtPreP2 exhibits different proteolytic subsite specificity from AtPreP1 when used for degradation of organellar targeting peptides and their mutants. Interestingly, AtPreP2 precursor protein was also found to be dual targeted to both mitochondria and chloroplasts in a single and dual in vitro import system. Furthermore, targeting peptide of the AtPreP2 dually targeted green fluorescent protein (GFP) to both mitochondria and chloroplasts in tobacco protoplasts and leaves using an in vivo transient expression system. The targeting of both AtPreP1 and AtPreP2 proteases to chloroplasts in A. thaliana in vivo was confirmed via a shotgun mass spectrometric analysis of highly purified chloroplasts. Reverse transcription–polymerase chain reaction (RT–PCR) analysis revealed that AtPreP1 and AtPreP2 are differentially expressed in mature A. thaliana plants. Phylogenetic evidence indicated that AtPreP1 and AtPreP2 are recent gene duplicates that may have diverged through subfunctionalization

    Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders

    Get PDF
    Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface

    A Behavioral Odor Similarity “Space” in Larval Drosophila

    Get PDF
    To provide a behavior-based estimate of odor similarity in larval Drosophila, we use 4 recognition-type experiments: 1) We train larvae to associate an odor with food and then test whether they would regard another odor as the same as the trained one. 2) We train larvae to associate an odor with food and test whether they prefer the trained odor against a novel nontrained one. 3) We train larvae differentially to associate one odor with food, but not the other one, and test whether they prefer the rewarded against the nonrewarded odor. 4) In an experiment like (3), we test the larvae after a 30-min break. This yields a combined task-independent estimate of perceived difference between odor pairs. Comparing these perceived differences to published measures of physicochemical difference reveals a weak correlation. A notable exception are 3-octanol and benzaldehyde, which are distinct in published accounts of chemical similarity and in terms of their published sensory representation but nevertheless are consistently regarded as the most similar of the 10 odor pairs employed. It thus appears as if at least some aspects of olfactory perception are “computed” in postreceptor circuits on the basis of sensory signals rather than being immediately given by them
    corecore