34 research outputs found

    Photoacoustic microscopy of human teeth

    Get PDF
    Photoacoustic microscopy (PAM) utilizes short laser pulses to deposit energy into light absorbers and sensitively detects the ultrasonic waves the absorbers generate in response. PAM directly renders a three-dimensional spatial distribution of sub-surface optical absorbers. Unlike other optical imaging technologies, PAM features label-free optical absorption contrast and excellent imaging depths. Standard dental imaging instruments are limited to X-ray and CCD cameras. Subsurface optical dental imaging is difficult due to the highly-scattering enamel and dentin tissue. Thus, very few imaging methods can detect dental decay or diagnose dental pulp, which is the innermost part of the tooth, containing the nerves, blood vessels, and other cells. Here, we conducted a feasibility study on imaging dental decay and dental pulp with PAM. Our results showed that PAM is sensitive to the color change associated with dental decay. Although the relative PA signal distribution may be affected by surface contours and subsurface reflections from deeper dental tissue, monitoring changes in the PA signals (at the same site) over time is necessary to identify the progress of dental decay. Our results also showed that deep-imaging, near-infrared (NIR) PAM can sensitively image blood in the dental pulp of an in vitro tooth. In conclusion, PAM is a promising tool for imaging both dental decay and dental pulp

    An Instruction on the In Vivo Shell-Less Chorioallantoic Membrane 3-Dimensional Tumor Spheroid Model

    Get PDF
    The traditional shell chicken chorioallantoic membrane (CAM) model has been used extensively in cancer research to study tumor growth and angiogenesis. Here we present a combined in vivo tumor spheroid and shell-less CAM three-dimensional model for use in quantitative and qualitative analysis. With this model, the angiogenic and tumorigenic environments can be generated locally without exogenous growth factors. This physiological model offers a stable, static and flat environment that features a large working area and wider field of view useful for imaging and biomedical engineering applications. The short experimental time frame allows for rapid data acquisition, screening and validation of biomedical devices. The method and application of this shell-less model are discussed in detail, providing a useful tool for biomedical engineering research

    Mid-Infrared Laser Ablation of Stratum Corneum Enhances In Vitro Percutaneous Transport of Drugs

    Get PDF
    The precise removal of stratum corneum from cadaveric swine skin by a mid-infrared erbium: yttrium scandium gallium garnet laser (λ = 2.79 μm; 250 μsec pulse width) was assessed by electrical resistance measurements and documented by histology. The effects of stratum corneum removal by laser ablation and by adhesive tape-stripping on the in vitro penetration of 3H-hydrocortisone and 125I-γ-interferon were determined. Excised swine skin was irradiated with laser (1 J/cm2 31 mJ/pulse; 1 Hz; 2mm spot diameter). For skin penetration studies, laser pulses were delivered to discrete 2-mm areas to ablate up to 12.6% of the total 3-cm2 stratum corneum diffusional area. Franz in vitro skin penetration chambers were used to measure the cumulative 48-h penetration of 3H-hydrocortisone and 125I-γ-interferon in laser-treated and tape-stripped skin. Electrical resistance measurements and histologic studies demonstrated that 10-14 laser pulses at the above energy density were required to abolish skin resistance and selectively ablate stratum corneum without damage to adjacent dermal structures. Laser ablation of 12.6% of the surface area of stratum corneum produced a 2.8 and 2.1-times increase in permeability constant (kp) for 3H-hydrocortisone and 125I-λ-interferon, respectively. These studies demonstrate that a pulsed mid-infrared laser can reliably and precisely remove the stratum corneum, facilitating penetration of large molecules such as 125I-λ-interferon that cannot penetrate intact skin. This new technique may be useful for basic and clinical investigation of skin barrier properties

    Analysis of DNA double-strand break response and chromatin structure in mitosis using laser microirradiation

    Get PDF
    In this study the femtosecond near-IR and nanosecond green lasers are used to induce alterations in mitotic chromosomes. The subsequent double-strand break responses are studied. We show that both lasers are capable of creating comparable chromosomal alterations and that a phase paling observed within 1–2 s of laser exposure is associated with an alteration of chromatin as confirmed by serial section electron microscopy, DAPI, γH2AX and phospho-H3 staining. Additionally, the accumulation of dark material observed using phase contrast light microscopy (indicative of a change in refractive index of the chromatin) ∼34 s post-laser exposure corresponds spatially to the accumulation of Nbs1, Ku and ubiquitin. This study demonstrates that chromosomes selectively altered in mitosis initiate the DNA damage response within 30 s and that the accumulation of proteins are visually represented by phase-dark material at the irradiation site, allowing us to determine the fate of the damage as cells enter G1. These results occur with two widely different laser systems, making this approach to study DNA damage responses in the mitotic phase generally available to many different labs. Additionally, we present a summary of most of the published laser studies on chromosomes in order to provide a general guide of the lasers and operating parameters used by other laboratories

    Dental pulp diagnosis using light-induced auto-fluorescence

    No full text

    Effects of a Novel Dental Gel on Enamel Surface Recovery from Acid Challenge.

    No full text
    BackgroundObjective was to evaluate the in vivo effects of a novel dental gel (Livionex gelR) vs. a comparison dental gel on the surfaces of pre-eroded enamel chips.MethodsOn days 1-5, after toothbrushing with dentifrice, nine subjects each wore 8 enamel chips mounted on a palatal appliance for 4 h. Enamel blocks were pre-demineralized daily. After 2 day washout, subjects repeated the protocol using fresh chips and the second toothpaste on days 8-12. Samples were evaluated using electron microscopy.ResultsTen standardized enamel surface photomicrographs/sample (total 1440 images) were evaluated for signs of erosion visually and on a scale of 0-3 by 1 evaluator. No significant differences were found between the 2 groups (p>0.32, 95% C.I.). Minimal surface erosion on approx. 15% of sample area was visible in both groups.ConclusionThe enamel surface appeared similar after usage of a test or control dentifrice. Based on this study, the test formulation did not affect enamel surface recovery from an erosive challenge.Practical implicationsDentifrices can contribute to maintaining a healthy enamel surface. An all-natural dental gel formulation with novel anti-plaque mechanism achieved similar recovery from acid challenge to enamel as a control gel

    Actin and myosin in spindle length control

    Get PDF
    This study investigates spindle biomechanical properties to better understand how spindles function. In this report, laser microbeam cutting across mitotic spindles resulted in movement of spindle poles toward the spindle equator. The pole on the cut side moved first, the other pole moved later, resulting in a shorter but symmetric spindle. Intervening spindle microtubules bent and buckled during the equatorial movement of the poles. Because of this and because there were no detectable microtubules within the ablation zone, other cytoskeletal elements would seem to be involved in the equatorial movement of the poles. One possibility is actin and myosin since pharmacological poisoning of the actin-myosin system altered the equatorial movements of both irradiated and un-irradiated poles. Immunofluorescence microscopy confirmed that actin, myosin and mono-phosphorylated myosin are associated with spindle fibres and showed that some actin and mono-phosphorylated myosin remained in the irradiated regions. Overall, our experiments suggest that actin, myosin and microtubules interact to control spindle length. We suggest that actin and myosin, possibly in conjunction with the spindle matrix, cause the irradiated pole to move toward the equator and that cross-talk between the two half spindles causes the un-irradiated pole to move toward the equator until a balanced length is obtained
    corecore