61 research outputs found

    Improving Household Drinking Water Quality: Use of Biosand Filter in Cambodia

    Get PDF
    The BSF is a robust water treatment technology for use in rural Cambodian households, capable of effective removal of bacteria, and significant reduction of diarrheal disease. BSF performance is comparable to other recommended household water treatment interventions

    Independent Evaluation of the BioSand Water Filter In Rural Cambodia: Sustainability, Health Impact and Water Quality Improvement

    Get PDF
    The United Nation's 7th Millennium Development Goal aims to reduce by half the number of people without sustainable access to safe drinking water. Safe water is critical to preventing diarrheal disease, which kills 2 million children annually. A promising household water treatment technology is the BioSand water filter (BSF), an intermittent slow sand filter that is locally made in Cambodia and several other developing countries. The BSF however, lacks adequate characterization and rigorous epidemiological evidence on its performance. The purpose of this research was to assess: (1) the factors associated with filter use and disuse by using a cross-sectional survey (2), the microbiological effectiveness of the BioSand filters still being used by reduced E. coli, and (3), the health impact of the BioSand filters as determined by a longitudinal, prospective cohort study in which diarrheal disease prevalence was measured among people in filter (intervention) households versus people in matched non-filter, control households.Master of Public Healt

    Evaluation of the Impact of the Plastic BioSand Filter on Health and Drinking Water Quality in Rural Tamale, Ghana

    Get PDF
    A randomized controlled trial of the plastic BioSand filter (BSF) was performed in rural communities in Tamale (Ghana) to assess reductions in diarrheal disease and improvements in household drinking water quality. Few studies of household water filters have been performed in this region, where high drinking water turbidity can be a challenge for other household water treatment technologies. During the study, the longitudinal prevalence ratio for diarrhea comparing households that received the plastic BSF to households that did not receive it was 0.40 (95% confidence interval: 0.05, 0.80), suggesting an overall diarrheal disease reduction of 60%. The plastic BSF achieved a geometric mean reduction of 97% and 67% for E. coli and turbidity, respectively. These results suggest the plastic BSF significantly improved drinking water quality and reduced diarrheal disease during the short trial in rural Tamale, Ghana. The results are similar to other trials of household drinking water treatment technologies

    The operation, flow conditions and microbial reductions of an intermittently operated, household-scale slow sand filter

    Get PDF
    Nearly one-fifth of the world\u27s population lacks access to safe, reliable sources of drinking water. Point of use (POU) household water treatment technology allows people to improve the quality of their water by treating it in the home. A promising emerging POU technology is the biosand filter (BSF). The BSF is a household-scale, intermittently operated slow sand filter that maintains a wet media bed containing a schmutzdecke and allows periodic water dosing by the user. Step input chemical tracer tests indicated that the BSF operates at near-plug flow conditions. Six-to-eight week longitudinal challenge studies were conducted with daily charges of surface water spiked with E. coli strain B bacteria, coliphages MS2 and PRD-1 and human enteric virus echovirus type 12. The BSF ripened in a manner similar to conventional SSFs. Flow rate slowed and microbial reductions improved over time with ripening. E. coli reductions were ~90% following filter startup but improved to 95—99.5% over time. Microbial reductions were greater with greater residence time within the filter, especially for water retained in the filter bed overnight. E. coli and echovirus 12 reductions were greater than those of coliphages MS2 and PRD-1

    A controlled, before-and-after trial of an urban sanitation intervention to reduce enteric infections in children: research protocol for the Maputo Sanitation (MapSan) study, Mozambique.

    Get PDF
    INTRODUCTION: Access to safe sanitation in low-income, informal settlements of Sub-Saharan Africa has not significantly improved since 1990. The combination of a high faecal-related disease burden and inadequate infrastructure suggests that investment in expanding sanitation access in densely populated urban slums can yield important public health gains. No rigorous, controlled intervention studies have evaluated the health effects of decentralised (non-sewerage) sanitation in an informal urban setting, despite the role that such technologies will likely play in scaling up access. METHODS AND ANALYSIS: We have designed a controlled, before-and-after (CBA) trial to estimate the health impacts of an urban sanitation intervention in informal neighbourhoods of Maputo, Mozambique, including an assessment of whether exposures and health outcomes vary by localised population density. The intervention consists of private pour-flush latrines (to septic tank) shared by multiple households in compounds or household clusters. We will measure objective health outcomes in approximately 760 children (380 children with household access to interventions, 380 matched controls using existing shared private latrines in poor sanitary conditions), at 2 time points: immediately before the intervention and at follow-up after 12 months. The primary outcome is combined prevalence of selected enteric infections among children under 5 years of age. Secondary outcome measures include soil-transmitted helminth (STH) reinfection in children following baseline deworming and prevalence of reported diarrhoeal disease. We will use exposure assessment, faecal source tracking, and microbial transmission modelling to examine whether and how routes of exposure for diarrhoeagenic pathogens and STHs change following introduction of effective sanitation. ETHICS: Study protocols have been reviewed and approved by human subjects review boards at the London School of Hygiene and Tropical Medicine, the Georgia Institute of Technology, the University of North Carolina at Chapel Hill, and the Ministry of Health, Republic of Mozambique. TRIAL REGISTRATION NUMBER: NCT02362932

    U1 adaptors result in reduction of multiple pre-mRNA species principally by sequestering U1snRNP

    Get PDF
    U1 Adaptors are a recently reported novel approach for targeted reduction of mRNA transcripts. A U1 adaptor oligonucleotide comprising of a target-complimentary hybridization domain and a U1 recruitment domain, directs the U1 snRNP complex to the terminal exon of a targeted gene, subsequently inhibiting poly(A) tail addition and leading to degradation of that RNA species within the nucleus. Here, we present data demonstrating U1 adapter-mediated gene silencing can result in significant ‘off-target’ silencing effects as demonstrated by the reduction of multiple mRNA species that were not intended to be targeted. Our data suggest that a substantial portion of this U1 adaptor-mediated off-target mRNA reduction is the result of sequestration U1 snRNP at levels sufficient to affect splicing and processing of non-target transcripts

    Comparative Analysis of PvPAP Gene Family and Their Functions in Response to Phosphorus Deficiency in Common Bean

    Get PDF
    BACKGROUND: Purple acid phosphatases (PAPs) play a vital role in adaptive strategies of plants to phosphorus (P) deficiency. However, their functions in relation to P efficiency are fragmentary in common bean. PRINCIPAL FINDINGS: Five PvPAPs were isolated and sequenced in common bean. Phylogenetic analysis showed that PvPAPs could be classified into two groups, including a small group with low molecular mass, and a large group with high molecular mass. Among them, PvPAP3, PvPAP4 and PvPAP5 belong to the small group, while the other two belong to the large group. Transient expression of 35S:PvPAPs-GFP on onion epidermal cells verified the variations of subcellular localization among PvPAPs, suggesting functional diversities of PvPAPs in common bean. Quantitative PCR results showed that most PvPAPs were up-regulated by phosphate (Pi) starvation. Among them, the expression of the small group PvPAPs responded more to Pi starvation, especially in the roots of G19833, the P-efficient genotype. However, only overexpressing PvPAP1 and PvPAP3 could result in significantly increased utilization of extracellular dNTPs in the transgenic bean hairy roots. Furthermore, overexpressing PvPAP3 in Arabidopsis enhanced both plant growth and total P content when dNTPs were supplied as the sole external P source. CONCLUSIONS: The results suggest that PvPAPs in bean varied in protein structure, response to P deficiency and subcellular localization. Among them, both PvPAP1 and PvPAP3 might function as utilization of extracellular dNTPs

    Vibrational circular dichroism spectroscopy for probing the expression of chirality in mechanically planar chiral rotaxanes

    Get PDF
    Mechanically interlocked molecules can exhibit molecular chirality that arises due to the mechanical bond rather than covalent stereogenic units. Developing applications of such systems is made challenging by the absence of techniques for assigning the absolute configuration of products and methods to probe how the mechanical stereogenic unit influences the spatial arrangements of the functional groups in solution. Here we demonstrate for the first time that Vibrational Circular Dichroism (VCD) can be used to not only discriminate between mechanical stereoisomers but also provide detailed information on their (co)conformations. The latter is particularly important as these molecules are now under investigation in catalysis and sensing, both of which rely on the solution phase shape of the interlocked structure. Detailed analysis of the VCD spectra shows that, although many of the signals arise from coupled oscillators isolated in the covalent sub-components, intercomponent coupling between the macrocycle and axle gives rise to several VCD bands

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore