47 research outputs found

    Hematopoietic Development of Human Pluripotent Stem Cells

    Get PDF
    Blood development proceeds through several waves of hematopoietic progenitors with unclear lineage relationships, which convolute the understanding of the process. Thinking of the hematopoietic precursors as the “blood germ layer” can integrate these waves into a unified hematopoietic lineage that originates in the yolk sac, the earliest site of blood development. Hematopoietic differentiation of pluripotent stem cells (PSCs) reflects to a certain extent the complexities of the yolk sac hematopoiesis. In the unified version of blood issue development, the PSC-derived hematopoiesis can also generate post-yolk sac hematopoietic progenitors. To do this, the differentiation has to be arranged for the reproduction of the intraembryonic hematopoiesis. Inflammatory signaling was recently shown to be actively engaged in blood ontogenesis. In addition, a highly recapitulative differentiation of human PSCs was found to spontaneously ignite intense sterile inflammation that has both instructive and destructive roles in the hPSC-hematopoiesis. Inflammatory induction of blood progenitors during hPSC-derived hematopoietic development has to be properly contained. A possible explanation of problems associated with in vitro blood development is the failure of inflammation containment and resolution

    Runx1 is required for progression of CD41+ embryonic precursors into HSCs but not prior to this

    Get PDF
    Haematopoiesis in adult animals is maintained by haematopoietic stem cells (HSCs), which self-renew and can give rise to all blood cell lineages. The AGM region is an important intra-embryonic site of HSC development and a wealth of evidence indicates that HSCs emerge from the endothelium of the embryonic dorsal aorta and extra-embryonic large arteries. This, however, is a stepwise process that occurs through sequential upregulation of CD41 and CD45 followed by emergence of fully functional definitive HSCs. Although largely dispensable at later stages, the Runx1 transcription factor is crucially important during developmental maturation of HSCs; however, exact points of crucial involvement of Runx1 in this multi-step developmental maturation process remain unclear. Here, we have investigated requirements for Runx1 using a conditional reversible knockout strategy. We report that Runx1 deficiency does not preclude formation of VE-cad+CD45-CD41+ cells, which are phenotypically equivalent to precursors of definitive HSCs (pre-HSC Type I) but blocks transition to the subsequent CD45+ stage (pre-HSC Type II). These data emphasise that developmental progression of HSCs during a very short period of time is regulated by precise stage-specific molecular mechanisms

    Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver

    Get PDF
    One day prior to mass emergence of haematopoietic stem cells (HSCs) in the foetal liver at E12.5, the embryo contains only a few definitive HSCs. It is thought that the burst of HSC activity in the foetal liver is underpinned by rapid maturation of immature embryonic precursors of definitive HSCs, termed pre-HSCs. However, because pre-HSCs are not detectable by direct transplantations into adult irradiated recipients, the size and growth of this population, which represents the embryonic rudiment of the adult haematopoietic system, remains uncertain. Using a novel quantitative assay, we demonstrate that from E9.5 the pre-HSC pool undergoes dramatic growth in the aorta-gonad-mesonephros region and by E11.5 reaches the size that matches the number of definitive HSCs in the E12.5 foetal liver. Thus, this study provides for the first time a quantitative basis for our understanding of how the large population of definitive HSCs emerges in the foetal liver

    Concise review:programming human pluripotent stem cells into blood

    Get PDF
    Blood disorders are treated with cell therapies including haematopoietic stem cell (HSC) transplantation as well as platelet and red blood cell transfusions. However the source of cells is entirely dependent on donors, procedures are susceptible to transfusion‐transmitted infections and serious complications can arise in recipients due to immunological incompatibility. These problems could be alleviated if it was possible to produce haematopoietic cells in vitro from an autologous and renewable cell source. The production of haematopoietic cells in the laboratory from human induced pluripotent stem cells (iPSCs) may provide a route to realize this goal but it has proven challenging to generate long‐term reconstituting HSCs. To date, the optimization of differentiation protocols has mostly relied on the manipulation of extrinsic signals to mimic the in vivo environment. We review studies that have taken an alternative approach to modulate intrinsic signals by enforced expression of transcription factors. Single and combinations of multiple transcription factors have been used in a variety of contexts to enhance the production of haematopoietic cells from human pluripotent stem cells. This programming approach, together with the recent advances in the production and use of synthetic transcription factors, holds great promise for the production of fully functional HSCs in the future

    Hematopoietic (stem) cell development-how divergent are the roads taken?

    Get PDF
    textabstractThe development of the hematopoietic system during early embryonic stages occurs in spatially and temporally distinct waves. Hematopoietic stem cells (HSC), the most potent and self-renewing cells of this system, are produced in the final ‘definitive’ wave of hematopoietic cell generation. In contrast to HSCs in the adult, which differentiate via intermediate progenitor populations to produce functional blood cells, the generation of hematopoietic cells in the embryo prior to HSC generation occurs in the early waves by producing blood cells without intermediate progenitors (such as the ‘primitive’ hematopoietic cells). The lineage relationship between the early hematopoietic cells and the cells giving rise to HSCs, the genetic networks controlling their emergence, and the precise temporal determination of HSC fate remain topics of intense research and debate. This Review article discusses the current knowledge on the step-wise embryonic establishment of the adult hematopoietic system, examines the roles of pivotal intrinsic regulators in this process, and raises questions concerning the temporal onset of HSC fate determination

    Identification of the genes regulated by Wnt-4, a critical signal for commitment of the ovary

    Get PDF
    AbstractThe indifferent mammalian embryonic gonad generates an ovary or testis, but the factors involved are still poorly known. The Wnt-4 signal represents one critical female determinant, since its absence leads to partial female-to-male sex reversal in mouse, but its signalling is as well implicated in the testis development. We used the Wnt-4 deficient mouse as a model to identify candidate gonadogenesis genes, and found that the Notum, Phlda2, Runx-1 and Msx1 genes are typical of the wild-type ovary and the Osr2, Dach2, Pitx2 and Tacr3 genes of the testis. Strikingly, the expression of these latter genes becomes reversed in the Wnt-4 knock-out ovary, suggesting a role in ovarian development. We identified the transcription factor Runx-1 as a Wnt-4 signalling target gene, since it is expressed in the ovary and is reduced upon Wnt-4 knock-out. Consistent with this, introduction of the Wnt-4 signal into early ovary cells ex vivo induces Runx-1 expression, while conversely Wnt-4 expression is down-regulated in the absence of Runx-1. We conclude that the Runx-1 gene can be a Wnt-4 signalling target, and that Runx-1 and Wnt-4 are mutually interdependent in their expression. The changes in gene expression due to the absence of Wnt-4 in gonads reflect the sexually dimorphic role of this signal and its complex gene network in mammalian gonad development

    Murine hematopoietic stem cell activity is derived from pre-circulation embryos but not yolk sacs.

    Get PDF
    The embryonic site of definitive hematopoietic stem cell (dHSC) origination has been debated for decades. Although an intra-embryonic origin is well supported, the yolk sac (YS) contribution to adult hematopoiesis remains controversial. The same developmental origin makes it difficult to identify specific markers that discern between an intraembryonic versus YS-origin using a lineage trace approach. Additionally, the highly migratory nature of blood cells and the inability of pre-circulatory embryonic cells (i.e., 5-7 somite pairs (sp)) to robustly engraft in transplantation, even after culture, has precluded scientists from properly answering these questions. Here we report robust, multi-lineage and serially transplantable dHSC activity from cultured 2-7sp murine embryonic explants (Em-Ex). dHSC are undetectable in 2-7sp YS explants. Additionally, the engraftment from Em-Ex is confined to an emerging CD31+CD45+c-Kit+CD41- population. In sum, our work supports a model in which the embryo, not the YS, is the major source of lifelong definitive hematopoiesis
    corecore