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The development of the hematopoietic system during early embryonic stages

occurs in spatially and temporally distinct waves. Hematopoietic stem cells

(HSC), the most potent and self-renewing cells of this system, are produced in

the final ‘definitive’ wave of hematopoietic cell generation. In contrast to

HSCs in the adult, which differentiate via intermediate progenitor populations

to produce functional blood cells, the generation of hematopoietic cells in the

embryo prior to HSC generation occurs in the early waves by producing blood

cells without intermediate progenitors (such as the ‘primitive’ hematopoietic

cells). The lineage relationship between the early hematopoietic cells and the

cells giving rise to HSCs, the genetic networks controlling their emergence,

and the precise temporal determination of HSC fate remain topics of intense

research and debate. This Review article discusses the current knowledge on

the step-wise embryonic establishment of the adult hematopoietic system,

examines the roles of pivotal intrinsic regulators in this process, and raises

questions concerning the temporal onset of HSC fate determination.

Keywords: embryo; endothelial-to-hematopoietic cell transition; ES cell

differentiation; Gata2; hematopoietic development; hematopoietic stem

cells; hematopoietic progenitor cells; HSC fate; Runx1

The adult hematopoietic system consists of a hierarchy

of cells that progress from a stem cell state to the termi-

nally differentiated cells of over 10 blood cell lineages.

While hematopoietic stem cells (HSC) are rare, long-

lived and self-renewing, there are many intermediate

progenitor cell types that in a stepwise manner, lose

their multi-lineage and self-renewing potency before

becoming mature functioning blood cells. Much is

known about the adult hematopoietic hierarchy, but

only recently do we begin to know the variety of

hematopoietic cells in the embryo and to understand

how they relate to the establishment of the adult

hierarchy and HSCs. In this review we discuss the cur-

rent knowledge on the embryonic development of the

adult hematopoietic system focusing on endothelial-to-

hematopoietic cell transition (EHT), and on some of the

pivotal transcriptional regulators and their targets

involved in this process, and in the generation of HSCs.

Hematopoiesis is initiated by transient
generation of primitive cells

Blood cells are one of the first differentiated cell/tissue

lineages generated in the vertebrate embryo.

Abbreviations

AGM, aorta-gonad-mesonephros; BL-CFC, blast colony-forming progenitor cells; CFU-C, colony-forming unit-cell; CFU-S, colony-forming unit-

spleen; EHT, endothelial-to-hematopoietic cell transition; EMP, erythroid–myeloid progenitors; ES, embryonic stem; FL, fetal liver; Gpr56, G

protein-coupled receptor 56; HE, hemogenic endothelial; HSC, hematopoietic stem cells; IAHC, intra-aortic hematopoietic cluster cells; UA,
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Surprisingly, they are produced even before the circula-

tion is established [1]. Transient waves of hematopoietic

cell production are first initiated extraembryonically in

the yolk sac (YS) blood islands (Fig. 1) [2] which are

derived from mesodermal cells that migrate to the YS

at neural plate stage. At embryonic day 7 (E7), the

mesodermal aggregates generate the first blood cells

[2,3]. The emergence of blood cells in the YS is in close

relationship with the appearance of endothelial cells

that form the first vascular structures. This spatiotem-

poral association between the emergence of hematopoi-

etic and endothelial cells has led to the hypothesis that

they arise from a common bipotential ancestor, which

is termed the hemangioblast [1].

The first genetic evidence supporting a common pre-

cursor for hematopoietic and endothelial lineages came

from deletion of the Flk1 receptor tyrosine kinase gene

in the mouse. Flk1 expression is detected as early as at

E7 in the YS mesoderm [4]. Embryos lacking Flk1 are

not viable and interestingly, show a complete absence

of mesodermal cell aggregates in the YS. It was con-

cluded that Flk1 is required for mesodermal cell migra-

tion to form YS blood islands and for making

hematopoietic and endothelial cells, [5] thus suggesting

that a bipotential hemangioblast generates hematopoi-

etic and endothelial cells. Intriguingly, lineage mark-

ing/tracing experiments have shown that there is little/

no overlap in the mesodermal precursors that are

forming the endothelial and hematopoietic cells in

individual blood islands, suggesting a segregation in

fate early before migration to the YS [6].

Mouse embryonic stem (ES) cell hematopoietic dif-

ferentiation studies facilitated the search for putative

hemangioblast-like cells. ES cells are pluripotent cells

derived from the inner cell mass of the blastocyst [7].

They are characterized by self-renewal ability and the

capacity to recapitulate early embryonic development

by differentiating into cell derivatives of all three

embryonic germ-cell layers [8].

Embryonic stem cells differentiated in hematopoietic

culture conditions for 2.5 days generated blast colony-

forming progenitor cells (BL-CFC), that were able to

give rise to both, hematopoietic and endothelial cells

[9]. The BL-CFC (putative hemangioblast) represents a

transient population that persists for a very short time

in the differentiation culture. It expresses genes com-

mon to both hematopoietic and endothelial lineage,

including Flk1 [10]. More recently it has been shown

Fig. 1. Sites and times of blood cell generation in the mouse embryo. Blood generation in the mouse embryo starts in the blood islands of

extraembryonic yolk sac (YS) at embryonic day 7 (E7) with a transient wave of ‘primitive’ erythrocyte, megakaryocyte and macrophage

production. The erythrocytes and megakaryocytes of that stage are short-lived and disappear by E9. Primitive macrophages are

hypothesized to be the source of tissue resident macrophages in the adult brain. The second wave of blood generation gives rise to

bipotential erythroid-myeloid progenitors (EMPs) that emerge in the YS from E8.25. Shortly thereafter, lymphoid potential in detected. The

paired dorsal aortae contain lymphoid potential as do the allantois/chorion. In the third hematopoietic wave, long-lived transplantable

hematopoietic stem cells (HSCs) are generated beginning at E10.5 in the aorta-gonad mesonephros (AGM) region. HSCs are also detected

in the vitelline (VA) and umbilical (UA) arteries, YS, placenta and in embryonic head. HSCs and EMPs migrate to the fetal liver (FL) where

they expand and reside before migrating to the bone marrow niches.
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that the BL-CFC have an additional differentiation

potential to cardiomyocyte lineage [11] and thus, the

physical isolation of the hemangioblast remains diffi-

cult. Nonetheless, to better understand embryonic

hematopoiesis in vitro ES cell hematopoietic differenti-

ation models have been widely used, as they recapitu-

late the early stages of hematopoietic cell development

and differentiate to almost all hematopoietic lineages,

thus facilitating biochemical analyses of transcription

factors and other regulatory molecules involved in

development.

The earliest blood cells detected in
the embryo are primitive erythrocytes,
macrophages, and megakaryocytes

Blood cells that emerge in the first wave of hematopoi-

etic cell generation are ‘primitive’ erythrocytes, macro-

phages and rare megakaryocyte progenitors [2,12].

This developmental wave is categorized as ‘primitive’

due to the distinctive characteristics of the erythrocytes

and erythrocyte colony-forming unit cells (EryP-CFU-

Cs). ‘Primitive’ red blood cells are nucleated and are

three times larger than fetal and six times larger than

adult erythrocytes [13,14]. Moreover, they produce a

developmentally distinct embryonic (bH1) globin,

which is not detected in adult erythrocytes. ‘Primitive’

erythrocytes peak in numbers at E8.25 and disappear

rapidly by E9 [2,12]. The short developmental time of

these cells resembles the transient nature of heman-

gioblast-like cells, thus supporting the hypothesis that

they originate from a short-lived precursor.

Concurrently, rare macrophage progenitors are

detected in the YS [2,15]. ‘Primitive’ macrophages

from this first YS hematopoietic wave (E7–7.5) are

directly derived from the blood islands and do not go

through a monocyte intermediate [16–18] that charac-

terizes the macrophages generated from HSCs in the

adult bone marrow. Once the bloodstream is estab-

lished at E8.25–8.5 [19] the YS-derived macrophages

migrate to the developing tissues where they become

‘tissue resident’ macrophages expressing high levels of

F4/80 macrophage surface marker. These include

macrophages in the skin, microglia in the brain, Kupf-

fer cells in the liver, and Langerhans cells in the epi-

dermis. Recent lineage-tracing studies suggest that

‘tissue resident’ macrophages in the skin, liver, and

lung are replaced before birth by ‘monocyte derived’

macrophages generated in later waves of hematopoietic

development [20]. In contrast, the labeled brain micro-

glia cells are retained throughout adult life. Unique to

these macrophages, as compared to those in the adult,

are high F4/80 expression, c-Myb transcription factor

independence and PU.1 transcription factor depen-

dence [20–23]. By E9.5, the quantitative abundance of

phenotypic ‘primitive’ macrophages and megakary-

ocytes in the embryo further suggests that these cells

are directly generated in the first hematopoietic wave

and not from the later waves of hematopoietic progen-

itor (HPC) and stem cell generation [15,24].

The need for these early blood cells in the embryo

before the circulation is established is puzzling. ‘Primi-

tive’ erythrocytes may be necessary for providing the

rapidly growing embryo with oxygen, macrophages for

phagocytosis of cells during tissue remodeling and for

lymphatic development but the role of megakaryocytes

is uncertain, although they are closely associated with

red blood cells.

Multipotent progenitors are generated
in the YS during a second wave of
blood cell generation

After the generation of ‘primitive’ erythrocytes, macro-

phages, and megakaryocytes, another wave of

hematopoietic cell production begins at E8.25 in the

YS (Fig. 1). It overlaps temporally with the first wave

[2], but produces functionally more complex bipoten-

tial erythroid–myeloid progenitors (EMP). EMP cells

express high levels of tyrosine receptor kinase ckit

(CD117) and CD41, and by E9.5 are positive for gran-

ulocyte–monocyte marker CD16/32 expression [24].

EMP-derived erythrocytes are distinguished from their

earlier, ‘primitive’ counterpart by the expression of

adult (bmajor) globin [2] and by undergoing enucle-

ation. Thus, based in this complexity and the genera-

tion of adult-like cells this wave is termed ‘definitive’

[25]. However, ckithiCD41+CD16/32+ EMPs lack

lymphoid cell potential, and are able to provide only

short-term in vivo reconstitution, giving rise to mainly

circulating red blood cells [24]. Hence, EMPs are dis-

tinct from HSCs.

Study of Ncx1 null which lack circulation show that

EMPs are generated in the YS and not in the embryo

proper through E9.5 [24,26]. They appear to emerge

from ckit+ cell clusters found in the venous and arte-

rial vessels of the YS [27]. These cells then colonize the

newly forming liver around late E9 [25] give rise to the

large numbers of erythrocytes, macrophages, granulo-

cytes, and monocytes found before the establishment

of a permanent hematopoietic system [20].

Other hematopoietic cells generated in the second

wave are rare cells with lymphoid potential, B-1 B cell

progenitors. They are detected at E8.5/9.5 in the YS

and aorta [28–30]. Mast cells are also found in the YS

from E9.5 onwards [31]. Taken together, this
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‘definitive’ wave of hematopoietic cell generation yields

more adult-like functionally competent blood cell

types. Also, there is growing evidence that these cells

may play an interactive role in promoting the third

wave of hemogenesis and HSC generation [32–34].

HSCs and HPCs emerge by EHT

Adult-type HSCs are defined by their robust ability to

repopulate long term all blood lineages upon trans-

plantation into irradiated adult recipients. In the

mouse embryo, the first adult HSCs appear and are

autonomously generated in the aorta-gonad-mesone-

phros (AGM) region at E10.5 (Fig. 1) [35,36]. They

are also found in the vitelline and umbilical arteries

(VA, UA) and in the head [37,38]. Shortly thereafter,

HSCs are detected in the YS, placenta, circulation and

fetal liver (FL) [35,36,39,40]. Althoughthe YS and pla-

centa may be capable of autonomously generating

HSCs, the FL serves only as a niche for the expansion

of HSCs (and EMPs) made in the other tissues

[39,41,42]. Just before birth, HSCs migrate to the bone

marrow where they reside throughout mammalian

adult life in specialized niches [43].

Hematopoietic stem cells are generated from a sub-

set of embryonic endothelial cells that possess hemo-

genic potential—the hemogenic endothelial cells

(Fig. 2A) [44,45]. They are detected at the time when

clusters of hematopoietic cells appear on the ventral

wall of the dorsal aorta. These intra-aortic hematopoi-

etic cluster cells (IAHC) are ckit+ and at E10.5,

approximately 600 IAHCs (1–19 ckit+ cells per clus-

ter) were found along the length of the embryo by

whole-mount embryo imaging [46]. Figure 2B shows

Gata2 mouse model where Gata2 marks the IAHCs.

The clusters are also found in the YS vasculature

(Fig. 2C). Vital imaging of the mouse embryonic aorta

at the time of HSC generation revealed the transition

of morphologically flat endothelial cells to cells that

bulge out of the vascular wall and form round

hematopoietic cells in the lumen of the aorta. This

process was visualized in Ly6a (Sca1) GFP fluorescent

reporter transgenic embryos. GFP is expressed in all

embryonic and adult HSCs in the mouse

[37,38,40,47,48] and hence, is an excellent reporter for

observing the emergence of HSC. To visualize EHT in

the aorta by confocal time-lapse imaging, thick sec-

tions of Ly6aGFP E10.5 embryos were stained with a

combination of antibodies against hematopoietic and

endothelial cell surface markers [49]. Hemogenic

endothelial cells that give rise to HSCs could be distin-

guished from other aortic endothelial cells by the

expression of GFP. Rare GFP+ckit+CD41+ cells

were observed bulging into the lumen of the aorta

A

C

B

Fig. 2. Emergence of HSCs in the AGM

and in the YS. (A) A subset of aortic

endothelial cells, the hemogenic

endothelial (HE) cells transdifferentiate to

form intra-aortic hematopoietic cluster

cells (IAHC) and hematopoietic stem cells

(HSC). A schematic diagram of a

transverse section through an E10.5

mouse aorta indicates HE, IAHC, and

emerging HSC. (B) Transverse section

through an E10.5 Gata2Venus mouse

embryo. Gata2 is one of the pivotal

transcription factors expressed in HE,

IAHC and emerging HSCs. Thus,

Gata2Venus reporter can be exploited to

visualize the emergence of HSCs.

Section of an E10.5 aorta-gonad-

mesonephros (AGM) shows Gata2 (green)

in most of the CD34+ (red) IAHC

(arrowhead) and some endothelial cells.

Gata2 is also detected in a few round

CD34� cells (asterisk) that are closely

associated with IAHC suggesting that they

arose from clusters. (C) CD34+Gata2+

clusters are also found in the YS

vasculature. Size bars = 20 lm.
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directly from GFP+CD31+ ventral aortic endothelial

cells, thus facilitating the tracking of single cells as

they transition from an endothelial cell to a HSC/

HPC. This process is generally known as the EHT.

Endothelial-to-hematopoietic cell transition has also

been imaged in zebrafish embryos, however, the pro-

cess is slightly different than that observed in mouse

embryos. The hemogenic endothelial cells in zebrafish

bulge ablumenally, and emerge as hematopoietic cells

in the interstitial region between the aorta and axial

vein. Moreover, multicell clusters do not form. Emerg-

ing zebrafish HS/PCs are marked by c-Myb expression

[50]. Vital time-lapse imaging of compound transgenic

c-Myb-GFP:Kdr1 (Flk1 endothelial marker)-mCherry

zebrafish embryos demonstrates that hematopoietic

cells acquiring CD41 expression emerge directly from

endothelium in the ventral side of the dorsal aorta

[51–53]. They move quickly to extravasate into the

lumen of the axial vein where they enter the circula-

tion. They are next found to enter specific niches in

caudal hematopoietic tissue, the equivalent of the

mouse fetal liver [54].

Endothelial-to-hematopoietic cell transition has also

been recapitulated in vitro and detected by time-lapse

imaging of ES cell hematopoietic differentiation cul-

tures. ES cell-derived cells expressing the endothelial

marker Tie2 and ckit, when exposed to hematopoietic

culture conditions, give rise to CD41+ hematopoietic

cells that downregulate Tie2 [55,56]. Together these

data provide in vitro and in vivo morphological and

phenotypical evidence of HSC/HPC emergence via

EHT—a process that is conserved in human ESCs [57]

and all vertebrate embryos [44] thus far examined.

Pivotal regulators of EHT and HSC
generation

Several hematopoietic transcription factors have been

found to play an essential role in the generation of

‘definitive’ hematopoietic cells in the mouse embryo.

As two of the most frequently studied, Gata2 and

Runx1 are the focus of this section. The importance of

these factors in the process of HS/PC generation was

first highlighted by the creation of germline knockout

mice. Gata2 and Runx1 homozygous deletions resulted

in embryonic lethality at E10.5 and E12.5, respectively,

accompanied by severe fetal liver anemia [58,59].

Functional studies revealed that although Runx1�/�

mice make ‘primitive’ hematopoietic cells, they com-

pletely lack ‘definitive’ hematopoietic progenitors in

the YS and fetal liver and importantly, no HSCs are

generated in the AGM [59,60]. Similarly, the Gata2�/�

embryos are defective for ‘definitive’ hematopoiesis, as

demonstrated by greatly reduced progenitor numbers

[58,61]. Recently it was demonstrated by using a

Gata2Venus reporter mouse model that Gata2 is

expressed in all functional HSCs, and in most HPCs

[62]. In vitro hematopoietic differentiation experiments

with Gata2�/� and Runx1�/� ES cells show that they

retain the ability to undergo ‘primitive’ erythroid dif-

ferentiation, however, at reduced levels. ‘Definitive’

hematopoietic progenitor generation is profoundly

impaired. Analysis of ES cell-generated Gata2�/� and

Runx1�/� chimeric mice revealed a lack of knockout

cell contribution to any of the hematopoietic organs

[58,59]. Thus, Gata2 and Runx1 play pivotal roles in

hematopoietic development, affecting mainly the

‘definitive’ stage in which HPCs and HSCs are gener-

ated.

The temporal and spatial expression patterns of

Runx1 and Gata2 in the embryo (as determined by

in situ hybridization, immunostaining, and/or knockin/

transgenic reporters) support their important cell-

intrinsic role in HSC and HPC generation. These fac-

tors are expressed at E8.0 in the YS, which at that

time is the main site of hematopoietic cell (EMP) gen-

eration [62–65]. Slightly thereafter, from E8.5 to E11.5

Runx1 marks the endothelial cells on the ventral side

of the aorta, umbilical and vitelline arteries, placenta,

and head [38,63,66,67]. Although Gata2 is expressed in

the endothelial cells lining the aorta already at E8.5,

the frequency of cells expressing Gata2 increases in the

AGM and FL concurrent with the emergence of

IAHC and the first HSCs [62]. It is also expressed in

the vitelline and umbilical arteries and the placenta.

Moreover, both Gata2 and Runx1 are expressed in

IAHCs in the embryonic arteries and all such

hematopoietic clusters are absent in the aortae and

other major arteries of Gata2�/� and Runx1�/�

embryos [63,68–71].
The continuum of expression during the transition

from endothelial cells to hematopoietic cluster cells in

static images of the aorta implicates these factors in

the process of EHT. Indeed, conditional deletion of

Gata2 and Runx1 in hemogenic endothelium marked

by vascular endothelial-cadherin (Vec) expression or

Tie2 expression demonstrates that these factors are

essential in the hemogenic endothelial cells for the for-

mation of hematopoietic clusters and importantly, for

the generation of functional HPCs and HSCs

[47,71,72]. Moreover, Runx1 is required for HSC gen-

eration between E10.5 and E11.5, as shown by tamox-

ifen-induced deletion in Vec-expressing cells [73]. The

vital imaging of Runx1 morphant zebrafish embryos

provided an interesting insight into its role. In the

absence of Runx1, aortic endothelial cells undergo
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sudden death as they attempt transition to hematopoi-

etic cells, thus suggesting that Runx1 is required during

EHT for the survival of emerging hematopoietic cells

[51].

To test whether Runx1 and Gata2 are required in

hematopoietic cells after they are generated in the

mouse embryo, conditional deletion was performed in

cells marked by Vav expression. Although Runx1 is

not required [70], Gata2 continues to be essential in

the HSCs after they are made [71]. Therefore, Gata2

and Runx1 are pivotal to HSC and HPC emergence in

EHT during embryonic development, but are differen-

tially required as hematopoietic development proceeds.

Gata2 and Runx1 levels are strictly
controlled in EHT

It is of importance to note that HSC and HPC devel-

opment is highly dependent on the levels of Runx1

and Gata2 expression. Gata2+/� embryos have pro-

foundly reduced numbers of AGM HSCs, HPCs and

IAHCs. The bone marrow of Gata2+/� adult mice

contains normal quantities of HSCs, but these are

qualitatively impaired, as observed in competitive

transplantation assays [61,71,74]. Overexpression of

Gata2 also results in abnormal hematopoiesis: it

reduces bone marrow colony-forming unit-cell (CFU-

C) and colony-forming unit-spleen (CFU-S) activity

and results in a failure of multilineage reconstitution

[75]. Hematopoietic differentiation of ES cells overex-

pressing Gata2 suggests that abnormally high Gata2

expression blocks T- and B-cell generation, resulting in

myeloid-biased cell production [76,77]. Thus, Gata2

expression levels are likely to be involved in control-

ling cell fate decisions. Recent transcriptome analysis

of placental cells suggests that Gata2 is continuously

expressed in hemogenic and hematopoietic progenitors,

but downregulated during commitment to blood lin-

eages [78]. Also, Gata2 expression is downregulated

during ES cell-derived hemangioblast differentiation

into blast cells [79], thus indicating that levels of Gata2

may play a role in HSC and HPC expansion and

potency.

Runx1 also functions in a dose-dependent manner.

Runx1+/� embryos generate fewer HPCs and HSCs

[60,80–82]. Fascinatingly, Runx1+/� embryos experi-

ence a temporal shift in the emergence of HSCs. HSCs

are detected earlier than normal: at E10 in the AGM

and YS, and HSC activity is prematurely terminated

in the E11 AGM [60]. The E10.5/11.5 aorta in

Runx1+/� embryos has fewer IAHCs, suggesting that

Runx1 haploinsufficiency reduces HSC generation,

maintenance, and/or proliferation. Thus, normal

diploid levels of Runx1 are essential during develop-

ment for the timely emergence of HSCs and HPCs.

Gata2 and Runx1 function
synergistically to regulate their
downstream targets

Although deletion of a single Gata2 or Runx1 allele

disrupts HSC and HPC development, it does not result

in embryonic lethality [58,60,63]. Strikingly, the analy-

sis of Gata2+/�: Runx1+/� compound embryos

showed a trend toward fewer hematopoietic progeni-

tors and the absence of double haploinsufficient off-

spring due to embryonic lethality [83]. These data

suggest that Gata2 and Runx1 function together in the

same cells to control the expression of hematopoietic

genes involved in HSC and progenitor cell generation.

Further evidence for combinatorial function of

Gata2 and Runx1 comes from an extensive ChIP-seq

and bioinformatics analysis revealing interaction com-

plexes between a heptad of hematopoietic cell-specific

transcription factors that includes Runx1 and Gata2.

The vast majority of heptad-bound promoter and

enhancer regions of hematopoietic genes contain a

GATA consensus binding sequence. Only approxi-

mately 40% of them contain a Runx consensus bind-

ing motif, suggesting that Runx1 recruitment to the

regulatory elements within the complex is mediated by

Gata2 [83]. Combinatorial interactions within the hep-

tad complex result in hematopoietic cell type-specific

chromatin binding and downstream gene expression.

How exactly the complex functions in cell fate specifi-

cation, is yet unknown. Whether the factors act

sequentially or all at the same time, whether they regu-

late each other and how individual factor levels affect

complex formation is a matter of debate.

RNA sequencing of endothelial cells, hemogenic

endothelial cells, HPCs, and HSCs in the AGM show

that heptad transcription factor expression is increas-

ing during EHT, and is accompanied by transcrip-

tional activation of several downstream target genes.

One such target gene is the G protein-coupled receptor

56 (Gpr56) that is significantly upregulated (38-fold) in

HSCs as compared with hemogenic endothelial cells

[84]. Notably, Gpr56 expression is downregulated as a

result of Gata2 (regulatory element) deletion, which is

accompanied by severe disruption of hematopoiesis

and embryonic lethality [75]. Moreover, ChIP experi-

ments reveal direct binding of Gata2 to the Gpr56 +37
enhancer, [84,85] thus indicating that Gpr56 is a direct

target of Gata2. The precise function of Gpr56 in

hematopoiesis is as yet unknown. It has been sug-

gested to play a role in the maintenance of self-renewal
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[84], and it is essential for HSC repopulation potential

in mice [86]. In zebrafish, Gpr56 is required for the

emergence of hematopoietic cells in the dorsal aorta,

[84] thereby supporting its functional involvement in

EHT.

Another means by which the heptad complex may

regulate HSC and HPC emergence is by inducing a

stepwise expression of transcriptional suppressors Gfi1

and Gfi1b—the direct targets of Runx1. The expression

of these transcription factors in hemogenic endothe-

lium is pivotal for the normal EHT transition. Time-

lapse imaging of Gfi1+ cells show that they acquire

Gfi1b expression in the IAHCs followed by upregula-

tion of ckit and CD41 expression, indicating

hematopoietic commitment. Gfi1: Gfi1b double knock-

out embryos lack IAHCs, and ckit+ cells stay embed-

ded in the endothelial lining of the dorsal aorta

sustaining their endothelial program (Vec and Tie2

expression). Thus, Runx1 together with Gfi1 factors

promote EHT by suppressing endothelial pro-

gram, thereby allowing hematopoietic cells to emerge

[87–89].

Do HSCs establish their fate prior to
or during EHT?

Vital imaging demonstrates that HSCs and HPCs are

generated by morphological transdifferentiation of spe-

cialized endothelial cells, and genetic tracing studies

show that functional HSCs/HPCs descend from cells

expressing endothelial markers. But when is

hematopoietic fate, and more precisely, when is HSC

fate established? Current research interests are address-

ing the issue of whether HSC fate and function is

determined in the endothelium during EHT, or primed

earlier or later in development.

A Runx1 + 23 enhancer GFP (+23GFP) reporter

mouse was used to explore this issue. Runx1 expression

in vast majority of mouse hematopoietic stem and pro-

genitor cells and aortic endothelial cells is controlled by

a Runx1 + 23 enhancer, thus the +23GFP mouse

model allows specific isolation of hemogenic endothe-

lial cells [90,91]. Transcription analysis (Fluidigm) with

a panel of endothelial and hematopoietic genes demon-

strated that at E8.5 the +23GFP expressing aortic

hemogenic endothelium is distinguished from +23GFP

negative endothelium by higher expression of

hematopoietic regulators such as Meis1, Gata2, Gata3

and SCL. Single-cell transcriptome analysis showed in

approximately 50% of +23GFP hemogenic endothelial

cells that higher Meis1 expression is accompanied by

downregulation of the endothelial marker Etv2, thus

arguing for hematopoietic fate establishment earlier

than previously recognized [91]. At a later developmen-

tal time (at E10.5) in the Ly6a GFP model, the tran-

scriptome of the aortic hemogenic endothelial fraction

(CD31+ckit�GFP+) showed differences to the

endothelial fraction (CD31+ckit�GFP�), with heptad

transcription factor and Notch gene expression

increased [84]. Few indications of hematopoietic gene

expression were found in the hemogenic endothelial

fraction as compared to the HPC/HSC fraction

(CD31+ckit+GFP+). However, these experiments were

performed with populations of sorted cells and await

single-cell transcriptomic analysis. Importantly, the

expression of the heptad factors is the first and pivotal

step directing a hematopoietic program, and as such

Runx1 +23GFP is an excellent indicator showing that

the hemogenic and hematopoietic programs are estab-

lished already in a subset of endothelial cells at the

beginning stage of ‘definitive’ hematopoietic cell devel-

opment.

If hematopoietic and HSC commitment occurs ear-

lier than functional HSCs emerge, the aortic endothe-

lium may harbor immature cells that in the proper

microenvironment are able to mature into functional

HSCs. To test this, an OP9 stromal cell coaggregation

culture was established that facilitates the ex vivo mat-

uration of hematopoietic/endothelial cells obtained by

multisurface marker phenotypic sorting [92]. Using this

approach it was shown that E9.5 dorsal aorta contains

a VEC+CD41+CD45�CD43� cell population (termed

pro-HSC) that lacks repopulating activity in direct

in vivo transplantation assays. However, when co-

aggregated with OP9 and ex vivo cultured for 7 days,

this population is able to reconstitute the hematopoi-

etic system of the recipient [93]. These pro-HSCs are

almost devoid of endothelial cells and it is thought

that they may represent a stage directly downstream of

the Runx1 +23GFP+ hemogenic endothelium present

in the E8.5 AGM [91].

Also, the E10.5 and E11.5 AGM is thought to

contain immature HSCs—this VEC+CD41low

CD45�CD43+ population (termed pre-HSC) upregu-

lates CD45 expression when coaggregated with OP9

and mature into functional, repopulating HSCs [92].

Interestingly, it has been proposed that the pre-HSCs

may be generated independently of Runx1, as a devel-

opmental block is not observed before the transition

of CD41+ cells to CD45+ in Runx1-deficient mice

[94]. Cells with a pre-HSC phenotype are present also

in the E11.5 YS and FL, but they are not able to

mature into engrafting HSCs. Thus, functional pre-

HSCs are thought to be present mainly in the AGM

region and in the extraembryonic arteries

[92,93,95,96].
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These data propose that definitive HSCs may be

primed for a hematopoietic gene expression program

very early in development, making the precise tempo-

ral onset of the HSC program debatable. However, it

should be taken into account that ex vivo manipula-

tions, such as stromal cell and explant (co-)cultures,

consequently introduce new variables into the model,

that might not be present in in vivo. Advances in

in vivo lineage and vital imaging tracing tools and sin-

gle cell transcriptomics will assist in further investiga-

tions of such cells under more physiologic conditions

representative of the in vivo embryonic milieu.

Recent studies have suggested that mouse embry-

onic head produces adult HSCs and HPCs indepen-

dently from other hematopoietic organs and

circulation. Lineage-tracing experiments show that

embryonic head-derived HSC progeny contribute to

the adult HSC population [38]. However, to date, it

has not been demonstrated that the head HSCs are

emerging via an EHT in a similar manner to those in

AGM. Moreover, the head vasculature lacks IAHCs

[66,97]. Also, head HSCs do not seem to go through

the putative pre-HSC state since no/few pre-HCSs

have been reported in the head as demonstrated by

OP9 coaggregation culture of E11.5 head region [98].

These studies suggest that there may be an alternative

way by which functional HSCs are generated, and

could include generation in different spatial and tem-

poral frameworks, and different regulatory programs

and networks. Defining such mechanisms could con-

tribute to answering questions currently arising in the

field of hematopoiesis: for instance, such information

may clarify the source of heterogeneity among HSCs

—BMP-activated and BMP-nonactivated, myeloid or

lymphoid biased [99,100]. Also, it may provide insight

into why there are many more HPCs in the IAHCs

than HSCs [96], and explain the source of the large

cohort of FL HSCs that appears within 24 h follow-

ing the generation of the first HSCs in the AGM and

the rapid decrease in the pre-HSC numbers in the

AGM [98].

Concluding remarks

The adult hematopoietic system is established through

the progressive generation of hematopoietic cells with

increasing functional complexity, culminating in the

de novo generation of long-lived self-renewing HSCs

that provide the adult organism with all functional

blood cells. Although the precise temporal onset of

expression and of the HSC program and initiation of

function is debatable, it is certain that it is directed by

the expression of a small set of pivotal hematopoietic

transcription factors. In combination, these factors cre-

ate a highly complex network that, depending on the

time and levels of expression, drive the determination

of hematopoietic progenitors and stem cell fate. It

remains a future challenge to determine all the players

in this process, to examine all the precursors to HSCs,

as well as to cells along the process of endothelial-to-

hematopoietic transition on the single-cell level to con-

verge transcriptomics with cell biology and function.

This would ultimately enable the recapitulation of

physiologic HSC development in vitro for the de novo

production of transplantable HSCs for therapeutic

strategies.
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