476 research outputs found

    The gut microbiome: a new frontier in musculoskeletal research

    Get PDF
    Purpose of the review The human gut harbors a complex community of microbes that influence many processes regulating musculoskeletal development and homeostasis. This review gives an update on the current knowledge surrounding the impact of the gut microbiota on musculoskeletal health, with an emphasis on research conducted over the last three years. Recent findings The gut microbiota and their metabolites are associated with sarcopenia, osteoporosis, osteoarthritis, and rheumatoid arthritis. The field is moving fast from describing simple correlations to pursue establishing causation through clinical trials. The gut microbiota and their microbial-synthesized metabolites hold promise for offering new potential alternatives for the prevention and treatment of musculoskeletal diseases given its malleability and response to environmental stimuli.</p

    Stimulation of the catalytic activity of poly(ADP-ribosyl) transferase by transcription factor Yin Yang 1

    Get PDF
    AbstractThe transcriptional regulator Yin Yang 1 (YY1) has previously been demonstrated to physically interact with poly(ADP-ribosyl) transferase (ADPRT). This nuclear enzyme catalyzes the synthesis of ADP-ribose polymers and their attachment to target proteins. It is reported here that YY1 associates preferably with the extensively auto(ADP-ribosyl)ated form of ADPRT, but not with deproteinized ADP-ribose polymers. In the presence of YY1 the catalytic rate of ADPRT is enhanced about 10-fold. This stimulation is in part due to modification of YY1, thus serving as a substrate of the reaction. In addition, automodification of ADPRT is also substantially increased. The activation by YY1 is most pronounced at low concentrations of ADPRT suggesting that the presence of YY1 may either facilitate the formation of catalytically active dimers of ADPRT or lead to the occurrence of active heterooligomers. The potential significance of these observations was verified by analyzing the activity of ADPRT in HeLa nuclear extracts. The endogenous enzyme exhibited an about 10-fold higher activity as compared to the isolated recombinant protein. It is likely that the heat-stable transcription factor YY1 contributed to the increased activity of ADPRT detected in the nuclear extracts, because heated extracts had a similar stimulatory effect on isolated ADPRT as isolated YY1 used at comparable concentrations. It is concluded that YY1 may be an important regulator of ADPRT and, therefore, could support the function of ADPRT to facilitate DNA repair

    Advanced Magnetic Resonance Imaging and Molecular Imaging of the Painful Knee

    Get PDF
    Chronic knee pain is a common condition. Causes of knee pain include trauma, inflammation, and degeneration, but in many patients the pathophysiology remains unknown. Recent developments in advanced magnetic resonance imaging (MRI) techniques and molecular imaging facilitate more in-depth research focused on the pathophysiology of chronic musculoskeletal pain and more specifically inflammation. The forthcoming new insights can help develop better targeted treatment, and some imaging techniques may even serve as imaging biomarkers for predicting and assessing treatment response in the future. This review highlights the latest developments in perfusion MRI, diffusion MRI, and molecular imaging with positron emission tomography/MRI and their application in the painful knee. The primary focus is synovial inflammation, also known as synovitis. Bone perfusion and bone metabolism are also addressed.</p

    The challenges of developing a contrast-based video game for treatment of amblyopia

    Get PDF
    Perceptual learning of visual tasks is emerging as a promising treatment for amblyopia, a developmental disorder of vision characterized by poor monocular visual acuity. The tasks tested thus far span the gamut from basic psychophysical discriminations to visually complex video games. One end of the spectrum offers precise control over stimulus parameters, whilst the other delivers the benefits of motivation and reward that sustain practice over long periods. Here, we combined the advantages of both approaches by developing a video game that trains contrast sensitivity, which in psychophysical experiments, is associated with significant improvements in visual acuity in amblyopia. Target contrast was varied adaptively in the game to derive a contrast threshold for each session. We tested the game on 20 amblyopic subjects (10 children and 10 adults), who played at home using their amblyopic eye for an average of 37 sessions (approximately 11 h). Contrast thresholds from the game improved reliably for adults but not for children. However, logMAR acuity improved for both groups (mean = 1.3 lines; range = 0–3.6 lines). We present the rationale leading to the development of the game and describe the challenges of incorporating psychophysical methods into game-like settings

    Neonatal abstinence syndrome and high school performance

    Get PDF
    BACKGROUND AND OBJECTIVES: Little is known of the long-term, including school, outcomes of children diagnosed with Neonatal abstinence syndrome (NAS) (International Statistical Classification of Disease and Related Problems [10th Edition], Australian Modification, P96.1). METHODS: Linked analysis of health and curriculum-based test data for all children born in the state of New South Wales (NSW), Australia, between 2000 and 2006. Children with NAS (n = 2234) were compared with a control group matched for gestation, socioeconomic status, and gender (n = 4330, control) and with other NSW children (n = 598 265, population) for results on the National Assessment Program: Literacy and Numeracy, in grades 3, 5, and 7. RESULTS: Mean test scores (range 0-1000) for children with NAS were significantly lower in grade 3 (359 vs control: 410 vs population: 421). The deficit was progressive. By grade 7, children with NAS scored lower than other children in grade 5. The risk of not meeting minimum standards was independently associated with NAS (adjusted odds ratio [aOR], 2.5; 95% confidence interval [CI], 2.2-2.7), indigenous status (aOR, 2.2; 95% CI, 2.2-2.3), male gender (aOR, 1.3; 95% CI, 1.3-1.4), and low parental education (aOR, 1.5; 95% CI, 1.1- 1.6), with all Ps < .001. CONCLUSIONS: A neonatal diagnostic code of NAS is strongly associated with poor and deteriorating school performance. Parental education may decrease the risk of failure. Children with NAS and their families must be identified early and provided with support to minimize the consequences of poor educational outcomes

    Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

    Get PDF
    Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes

    The polygenic and monogenic basis of paediatric fractures

    Get PDF
    Purpose of Review Fractures are frequently encountered in paediatric practice. Although recurrent fractures in children usually unveil a monogenic syndrome, paediatric fracture risk could be shaped by the individual genetic background influencing the acquisition of bone mineral density, and therefore, the skeletal fragility as shown in adults. Here, we examine paediatric fractures from the perspective of monogenic and complex trait genetics.Recent Findings Large-scale genome-wide studies in children have identified similar to 44 genetic loci associated with fracture or bone traits whereas similar to 35 monogenic diseases characterized by paediatric fractures have been described.Genetic variation can predispose to paediatric fractures through monogenic risk variants with a large effect and polygenic risk involving many variants of small effects. Studying genetic factors influencing peak bone attainment might help in identifying individuals at higher risk of developing early-onset osteoporosis and discovering drug targets to be used as bone restorative pharmacotherapies to prevent, or even reverse, bone loss later in life.Diabetes mellitus: pathophysiological changes and therap

    The KNee OsteoArthritis Prediction (KNOAP2020) challenge:An image analysis challenge to predict incident symptomatic radiographic knee osteoarthritis from MRI and X-ray images

    Get PDF
    Objectives: The KNee OsteoArthritis Prediction (KNOAP2020) challenge was organized to objectively compare methods for the prediction of incident symptomatic radiographic knee osteoarthritis within 78 months on a test set with blinded ground truth. Design: The challenge participants were free to use any available data sources to train their models. A test set of 423 knees from the Prevention of Knee Osteoarthritis in Overweight Females (PROOF) study consisting of magnetic resonance imaging (MRI) and X-ray image data along with clinical risk factors at baseline was made available to all challenge participants. The ground truth outcomes, i.e., which knees developed incident symptomatic radiographic knee osteoarthritis (according to the combined ACR criteria) within 78 months, were not provided to the participants. To assess the performance of the submitted models, we used the area under the receiver operating characteristic curve (ROCAUC) and balanced accuracy (BACC). Results: Seven teams submitted 23 entries in total. A majority of the algorithms were trained on data from the Osteoarthritis Initiative. The model with the highest ROCAUC (0.64 (95% confidence interval (CI): 0.57–0.70)) used deep learning to extract information from X-ray images combined with clinical variables. The model with the highest BACC (0.59 (95% CI: 0.52–0.65)) ensembled three different models that used automatically extracted X-ray and MRI features along with clinical variables. Conclusion: The KNOAP2020 challenge established a benchmark for predicting incident symptomatic radiographic knee osteoarthritis. Accurate prediction of incident symptomatic radiographic knee osteoarthritis is a complex and still unsolved problem requiring additional investigation.</p
    corecore