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Objectives: The KNee OsteoArthritis Prediction (KNOAP2020) challenge was organized to objectively
compare methods for the prediction of incident symptomatic radiographic knee osteoarthritis within 78
months on a test set with blinded ground truth.
Design: The challenge participants were free to use any available data sources to train their models. A test
set of 423 knees from the Prevention of Knee Osteoarthritis in Overweight Females (PROOF) study con-
sisting ofmagnetic resonance imaging (MRI) andX-ray image data alongwith clinical risk factors at baseline
was made available to all challenge participants. The ground truth outcomes, i.e., which knees developed
incident symptomatic radiographic knee osteoarthritis (according to the combined ACR criteria) within 78
months, were not provided to the participants. To assess the performance of the submittedmodels, we used
the area under the receiver operating characteristic curve (ROCAUC) and balanced accuracy (BACC).
Results: Seven teams submitted 23 entries in total. A majority of the algorithms were trained on data
from the Osteoarthritis Initiative. The model with the highest ROCAUC (0.64 (95% confidence interval
(CI): 0.57e0.70)) used deep learning to extract information from X-ray images combined with clinical
variables. The model with the highest BACC (0.59 (95% CI: 0.52e0.65)) ensembled three different models
that used automatically extracted X-ray and MRI features along with clinical variables.
Conclusion: The KNOAP2020 challenge established a benchmark for predicting incident symptomatic
radiographic knee osteoarthritis. Accurate prediction of incident symptomatic radiographic knee oste-
oarthritis is a complex and still unsolved problem requiring additional investigation.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Osteoarthritis Research Society
International. This is an open access article under the CC BY license (http://creativecommons.org/
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Introduction

Osteoarthritis (OA) is the most common joint disease which
affects over 250 million people worldwide1. OA is a leading cause of
disability and results in a tremendous burden for patients and so-
ciety2. At the end stage of the disease, total knee replacement (TKR)
surgery is the only available treatment option. However, during the
early stages of OA, the disease might be more amenable to modi-
fication3,4. Thus, there is an important need to identify subjects at
high risk of knee OA incidence to prevent or slow down the disease
process.

In addition to known clinical risk factors for knee OA, imaging
may help to identify knees at high risk for OA incidence5e9. Ma-
chine learning approaches have been proposed to enhance the
analysis of large imaging datasets10 and have shown promising
results for prediction of OA incidence7,9,11. Deep learning is an
advanced machine learning method that can automatically extract
relevant image features using convolutional neural networks (CNN)
and has previously been applied for prediction of onset and pro-
gression of OA12e15. These studies include prediction of incidence
and progression of radiographic knee OA from X-ray images using a
modified ResNet14,16, prediction of progression of radiographic
medial joint space loss from X-ray images using a DenseNet12,17,
and prediction of the likelihood of a patient undergoing TKR from
X-ray images using a pre-trained ResNet13,18 and from magnetic
resonance imaging (MRI) data using a DenseNet15.

Typically, such prediction models are optimized, often by acci-
dent, for specific imaging datasets and it is unclear how different
methods would perform on previously unseen data from different
sources. Furthermore, direct comparison of the methods is difficult
due to the different datasets and data partitions. To enable better
comparison of methods, the concept of “grand challenges” has
emerged in the medical image analysis research community and
has been successfully applied to many specific image analysis and
prediction tasks. These challenges aim to assess the performance of
multiple different methods on the same data, using the same
evaluation protocol, where the participants typically do not have
access to the ground truth and hence cannot overfit their
models19,20. Previous OA-related challenges include the Segmen-
tation of Knee Images 2010 (SKI10) challenge21, the 2019 Interna-
tional Workshop on Osteoarthritis Imaging (IWOAI) knee MRI
segmentation challenge22, and the MRNet challenge for automated
interpretation of diagnostic knee MRI23, but a challenge on the
prediction of OA has not been presented to date.

In this work, we describe the methodology and present the re-
sults from the KNee OsteoArthritis Prediction (KNOAP2020) chal-
lenge. The aim of this challenge was to objectively compare
different methods for the prediction of incident symptomatic
radiographic knee OA (according to the combined American College
of Rheumatology (ACR) criteria24) within 78 months on a test set
with blinded ground truth. We provided a test set (MRI and X-ray
image data along with clinical risk factors at baseline) of 423 knees
without symptomatic radiographic knee OA at baseline and the
task was to identify which knees developed incident symptomatic
radiographic knee OA within the follow-up period.

Methods

Data

Data for this study originated from the Prevention of Knee
Osteoarthritis in Overweight Females (PROOF) study (ISRCTN
42823086)25. The PROOF study is a preventive randomized
controlled trial that included 407 middle-aged, overweight/obese
(body mass index (BMI) � 27 kg/m2) women at baseline. The
Please cite this article as: Hirvasniemi J et al., The KNee OsteoArthritis
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Medical Ethics Committee of Erasmus MC University Medical
Center approved the PROOF study and all study participants gave
written informed consent. For this challenge, we selected 453
knees (242 individuals) without symptomatic radiographic knee
OA (combined clinical and radiographic ACR criteria24) at baseline
and that had baseline X-ray and MR images and follow-up data at
2.5 years and/or 6.5 years for defining incident symptomatic
radiographic knee OA. Knees with KellgreneLawrence (KL)
grade26 > 1 at baseline were excluded. Furthermore, participants
who dropped out from the study before the last follow-up time-
point and had not developed symptomatic radiographic knee OA at
the previous timepoints were excluded.

Challenge design

The data were split into a small training dataset (30 knees) and
test set (423 knees) and were shared through the grand-challenge
website (https://knoap2020.grand-challenge.org). The training
data was meant for fine-tuning and contained background vari-
ables, clinical risk factors, X-ray and MR images, and outcome la-
bels. The test set contained the same data except the outcome label,
i.e., the participants did not know the actual outcome of each knee
in the test set. An open invitation was sent to research teams
worldwide to participate in the challenge. Participants were
required to sign a data use agreement before downloading the data.
Each participant was allowed to submit maximum of five sub-
missions. Each submission was required to include the probability
of each knee to develop incident symptomatic radiographic knee
OA within the follow-up and a short description of the algorithm.
The submissions were submitted via the challenge website. For
comparison, one team provided a reference submission using only
MRI data and one team provided four reference submissions using
only clinical variables (Table I and Supplementary Material) and
these submissions were not ranked. The test set of the challenge
was released in August 2020, the submission systemwas opened in
October 2020, the deadline for the submissions was in January
2021, and the results were presented at the IWOAI2021workshop27

in July 2021.

Imaging data

The imaging data of the challenge consisted of knee X-ray and
MR images. The images were converted to the NIfTI file format
(https://nifti.nimh.nih.gov)28 and were stored and shared via the
Health-RI XNAT platform (https://www.health-ri.nl/services/
xnat)29. The X-ray data consisted of semi-flexed posterior-ante-
rior knee radiographs that were taken according to the meta-
tarsophalangeal protocol30. The X-ray image data were acquired
with multiple devices and protocols. X-ray images with a Swissray
(ddR Compact System, Hochdorf, Switzerland) radiography system
were acquired with 60 kVp and 10 mAs and the pixel size was
0.104 mm � 0.104 mm. X-ray images with General Electric (GE)
(Thunder Platform, Waukesha, USA) radiography systems were
acquired with 60e70 kVp and 3e5 mAs and the pixel size varied
from 0.190 mm � 0.190 mm to 0.192 mm � 0.192 mm. Information
about the X-ray device manufacturer, tube voltage, exposure, and
pixel size were available for the participants.

The challenge MRI data were acquired with three different
scanners (1.0T Philips Intera, Eindhoven, The Netherlands; 1.5T
Siemens Symphony, Erlangen, Germany; and 1.5T Siemens Mag-
netom Essenza, Erlangen, Germany) and contained a coronal 2D
proton density (PD) weighted sequence and a sagittal 3D sequence
with water excitation (Supplementary Table 1). The scanner
manufacturer, repetition time, echo time, flip angle, slice thickness
and spacing, and voxel size were available for the participants.
Prediction (KNOAP2020) challenge: An image analysis challenge to
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Submission Modality Image feature extraction Prediction model Training data

Akousist X-ray þ MRI þ clinical X-ray: pre-trained ResNet-152;
MRI: MRNet

XGBoost classifier OAI (n ¼ 3,654)

CCF-Xray X-ray þ clinical X-ray: pre-trained VGG16 Logistic regression OAI (n ¼ 427)
CCF-MR MRI þ clinical MRI: pre-trained AlexNet Logistic regression OAI (n ¼ 427) þ KNOAP

train set (n ¼ 30)
Inbetweeners-1 X-ray þ clinical X-ray: pre-trained Resnet34 Logistic regression OAI (n ¼ 1,581)
Inbetweeners-2 X-ray þ clinical X-ray: ResNet34 and ResNet50 Logistic regression OAI (n ¼ 1767)
Inbetweeners-3 X-ray þ clinical X-ray: ResNet34 Multi-layer perceptron OAI (n ¼ 1,581)
Inbetweeners-4 X-ray þ clinical X-ray: ResNet34 Multi-layer perceptron OAI (n ¼ 1,581)
Inbetweeners-5 X-ray þ clinical X-ray: pre-trained Resnet34 Logistic regression OAI (n ¼ 1,581)
OuluMIPT-1 X-ray þ MRI þ clinical X-ray: joint shape and space (JS2)

features; MRI:
automatically extracted cartilage features

Gradient boosting machine OAI (n ¼ 432)

OuluMIPT-2 X-ray X-ray: ResNet18 ResNet18 OAI (n ¼ 432)
OuluMIPT-3 X-ray þ MRI þ clinical X-ray: JS2 features and ResNet18; MRI:

automatically extracted cartilage features
Ensemble of 3 models,
Gaussian Naïve Bayesian

OAI (n ¼ 432)

OuluMIPT-4 X-ray þ clinical X-ray: JS2 features Gradient boosting machine OAI (n ¼ 432)
OuluMIPT-5 X-ray þ MRI þ clinical X-ray: JS2 features and ResNet18; MRI:

automatically extracted cartilage features
Ensemble of 3 models,
Gaussian Naïve Bayesian

OAI (n ¼ 432)

TheRollingPebbles-0 X-ray þ clinical X-ray: Pre-trained DenseNet121 Ensemble classifier OAI (n ¼ 3,654)
TheRollingPebbles-1 X-ray þ MRI þ clinical X-ray: Pre-trained DenseNet121; MRI:

Automatically extracted soft tissue and
bone shape features

Ensemble classifier OAI (n ¼ 3,654)

TheRollingPebbles-Filtered X-ray þ MRI þ clinical X-ray: Pre-trained DenseNet121; MRI:
Automatically extracted soft tissue and
bone shape features

Ensemble classifier OAI (n ¼ 3,654)

TheRollingPebbles-Full X-ray þ MRI þ clinical X-ray: Pre-trained DenseNet121; MRI:
Automatically extracted soft tissue and
bone shape features

Ensemble classifier OAI (n ¼ 3,654)

TheRollingPebbles-Ensemble X-ray þ MRI þ clinical X-ray: Pre-trained DenseNet121; MRI:
Automatically extracted soft tissue and
bone shape features

Ensemble classifier OAI (n ¼ 3,654)

UC-MRI* MRI MRI: Automatically extracted cartilage and
tibial bone features

Linear discriminant
analysis

KNOAP train
set (n ¼ 30)

EMC-1* Clinical No image features Logistic regression OAI (n ¼ 432)
EMC-2* Clinical No image features Logistic regression OAI (n ¼ 432)
EMC-3* Clinical Manual Logistic regression OAI (n ¼ 432)
EMC-4* Clinical Manual Logistic regression OAI (n ¼ 432)

* Reference submission.

Table I Osteoarthritis and Cartilage

An overview of the submissions
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Clinical covariables

Clinical covariables for the KNOAP challenge were shared with
the participants through the challenge website. The following
variables were provided25,31: participant identification number,
age, BMI, side (left/right), baseline KL grade (0/1)26, history of knee
injury, presence of mild symptoms, varus malalignment, presence
of Heberden nodes, joint line tenderness, crepitus, morning stiff-
ness, and postmenopausal status.

Injury was defined as whether or not the women had ever
visited a doctor for knee injury (no/yes). Mild symptoms were
assessed with the question “Did you experience any pain in or
around your kneewithin the past 12months?” (no/yes). Both hands
of the individuals were examined for Heberden's nodes (no/yes).
Morning stiffness was evaluated with the Knee injury and Osteo-
arthritis Outcome Score (KOOS) subscale on stiffness32 and it was
defined as being present when the knee had moderate/much/very
much joint stiffness after sleeping (versus no/little joint stiffness).
Both knees of the individuals were examined for pain at palpation
of the medial and lateral joint line (no/yes) and tested for crepitus
during active flexion and extension of the knee (no/yes).
Please cite this article as: Hirvasniemi J et al., The KNee OsteoArthritis
predict incident symptomatic radiographic knee osteoarthritis from M
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Postmenopausal status was defined after 12 consecutive months of
amenorrhea.

Outcome measure

Incident symptomatic radiographic knee OA according to the
combined clinical and radiographic ACR criteria24 was the binary
outcome variable in this challenge. Symptomatic knee OA was
defined as knee pain and a definite tibiofemoral osteophyte of any
size in the same knee25. Knee pain was assessed with the question
“Did you experience pain in or around left, right, or both knees
during most days in the past month?”. Incident symptomatic
radiographic knee OA was defined as the presence of symptomatic
radiographic knee OA at 2.5 and/or 6.5 years follow-up that was not
present at baseline.

Training data

We provided a training dataset of 30 knees with the outcome
variable available for the participants, to allow them to finetune
their models on representative data. In addition, the participants
Prediction (KNOAP2020) challenge: An image analysis challenge to
RI and X-ray images, Osteoarthritis and Cartilage, https://doi.org/



J. Hirvasniemi et al. / Osteoarthritis and Cartilage xxx (xxxx) xxx4
were free to use any other source of training data. We anticipated
participants using the Osteoarthritis Initiative (OAI) data for this
purpose, since it is publicly available, has a long follow-up, and
includes both knee X-ray images and 3T MRI scans. The OAI is a
longitudinal multi-center study that includes clinical and imaging
data over a 9-year follow-up period in 4,796 subjects (45e79 years
old) at risk of knee OA. Details of the OAI data collection and study
design have been previously reported33. The OAI MRI protocol in-
cludes sagittal 3D dual-echo in steady state with selective water
excitation (DESS WE) and coronal 2D intermediate-weighted turbo
spin-echo (TSE IW) sequences that resemble the MRI sequences in
the KNOAP challenge test data. For convenience of the participants,
we provided a variable defining incident symptomatic radiographic
knee OA within 72 months for all baseline subjects in the OAI data.
We also proposed a randomly selected test set of 108 knees from
the OAI with characteristics similar to the knees in the KNOAP
challenge test set (the same age and BMI ranges and sex), enabling
participants to validate the performance of their models in the OAI
data and enabling a direct comparison of training results between
different models.
Statistical analyses

To assess the performance of the submitted models, we used
the area under the receiver operating characteristic curve (ROC
AUC) and balanced accuracy (BACC). ROC AUC was used as a pri-
mary measure to rank the submissions, whereas BACC was used as
secondary measure and this information was available for the
participants before they participated in the challenge. Due to the
class imbalance, postechallenge analyses included calculation of
the area under the precisionerecall curve (PR AUC) values34 as
well as sensitivities and specificities of the submissions. We
calculated 95% confidence intervals (CIs) by bootstrapping the test
set 1,000 times. Python (v. 3.7.2) and Scikit-learn (v. 0.23.1)35 li-
brary were used for calculation of the metrics. The statistical sig-
nificance of the difference between the models was assessed using
DeLong's test36.
Results

Dataset characteristics

In the training set and test set, 5/30 (16.7%) and 70/423 (16.5%)
knees developed incident symptomatic radiographic knee OA
within the follow-up, respectively. Supplementary Table 2 shows
the distribution of knees between different scanners used to ac-
quire the study data. At baseline, the mean age and BMI were 56.0
(standard deviation (SD): 2.8) years and 32.4 (SD: 3.7) kg/m2 in the
training set, respectively, and 55.7 (SD: 3.2) years and 31.7 (SD: 3.7)
kg/m2 in the test set, respectively.
Algorithms

Of the 15 teams that registered to the challenge, seven teams
provided altogether 23 submissions (Table I and Supplementary
Material). Of these teams and submissions, one team provided a
reference submission using only MRI data (UC-MRI) and one team
provided four reference submissions using only clinical variables
(EMC-1, EMC-2, EMC-3, EMC-4). The majority of the submissions
used deep learning for extracting information from the images. All
algorithms, except UC-MRI, were trained using knees from the OAI
database. UC-MRI algorithmwas trained on the KNOAP training set
of 30 knees.
Please cite this article as: Hirvasniemi J et al., The KNee OsteoArthritis
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Overall results

The ROC AUCs of all submitted algorithms varied from 0.501 to
0.636 (Table II). The algorithm with the highest ROC AUC was
Inbetweeners-1 with an ROC AUC of 0.636 (95% CI: 0.571e0.699),
which was statistically significantly higher (P < 0.05) than the ROC
AUCs of the EMC-1, EMC-2, and UC-MRI reference models according
to the DeLong's test. Fig. 1 shows the ROC curves for the three al-
gorithms with the highest ROC AUC (Inbetweeners-1, OuluMIPT-3,
and OuluMIPT-5) and for two reference models (EMC-2 and EMC-3).

The BACCs of all submitted algorithms varied from 0.479 to
0.587 (Table III). The algorithm with the highest BACC was Oulu-
MIPT-3 with a BACC of 0.587 (95% CI: 0.520e0.648). Of the refer-
ence models, EMC-4 and UC-MRI had the highest BACCs with BACCs
of 0.506 (95% CI: 0.477e0.542) and 0.506 (95% CI: 0.479e0.534),
respectively.

The PR AUCs of all submitted algorithms varied from 0.167 to
0.276 (Table IV). The algorithm with the highest PR AUC was
OuluMIPT-2 with an PR AUC of 0.276 (95% CI: 0.199e0.367). Of the
reference models, EMC-3 had the highest PR AUC (0.244 (95% CI:
0.189e0.327)). Fig. 2 shows the PR curves for the three models with
the highest PR AUC (OuluMIPT-2, OuluMIPT-3, and OuluMIPT-5) and
for two reference models (EMC-2 and EMC-3).

The majority of the algorithms had higher ROC AUC on the OAI
test set than on the KNOAP test set (Fig. 3). It should be noted that
some submissions used a different OAI test set than the proposed
OAI test set for evaluating their models.

Postechallenge analysis showed varying sensitivities (from 0.00
to 0.757) and specificities (from 0.297 to 1.00) of the submitted
algorithms (Supplementary Table 3). When one randomly selected
knee per participant was used in the analyses, the absolute values
of ROC AUC, BACC, and PR AUC were slightly higher than the
original results, but the CIs were larger (Supplementary Tables 4, 5,
and 6). Furthermore, OuluMIPT-3 had the highest ROC AUC.

X-ray image-based predictions

When looking at the submissions that used X-ray image data
with or without clinical data, Inbetweeners-1 had the highest ROC
AUC (0.636 (95% CI: 0.571e0.699)). The algorithm with the highest
BACC was OuluMIPT-4 with a BACC of 0.579 (95% CI: 0.512e0.639).
One model (OuluMIPT-2) used only X-ray image data (without co-
variate data) and had an ROC AUC of 0.570 (95% CI: 0.484e0.645)
and a BACC of 0.547 (95% CI: 0.481e0.605).

MRI-based predictions

There were two submissions that were based on MR images.
One of those submissions (CCF-MR) had an ROC AUC of 0.612
(95% CI: 0.546e0.679) and a BACC of 0.553 (95% CI: 0.493e0.617).
However, KL grade and varus malalignment are X-ray image-
based variables and were included in the model and, therefore,
the aforementioned submission is not purely MRI-based. The
reference MRI submission (UC-MRI) had an ROC AUC of 0.537
(95% CI: 0.467e0.604) and a BACC of 0.506 (95% CI:
0.477e0.542).

Discussion

In this work, we described the methodology and presented the
results from the KNOAP2020 challenge. This is the first challenge
organized on the prediction of knee OA incidence. A test set (MRI
and X-ray image data along with clinical risk factors at baseline)
with blinded ground truth was used to objectively compare
different methods for prediction of incident symptomatic
Prediction (KNOAP2020) challenge: An image analysis challenge to
RI and X-ray images, Osteoarthritis and Cartilage, https://doi.org/



Rank Submission Modality ROC AUC

1 Inbetweeners-1 X-ray þ clinical 0.636 (0.571e0.699)
2 OuluMIPT-3 X-ray þ MRI þ clinical 0.624 (0.546e0.692)
3 OuluMIPT-5 X-ray þ MRI þ clinical 0.621 (0.539e0.690)
4 Inbetweeners-5 X-ray þ clinical 0.614 (0.546e0.675)
5 CCF-MR MRI þ clinical 0.612 (0.546e0.679)
6 OuluMIPT-4 X-ray þ clinical 0.602 (0.524e0.670)
7 Inbetweeners-3 X-ray þ clinical 0.598 (0.524e0.665)
8 CCF-Xray X-ray þ clinical 0.595 (0.521e0.658)
9 OuluMIPT-1 X-ray þ MRI þ clinical 0.594 (0.512e0.662)
y EMC-4 Clinical 0.592 (0.519e0.656)
10 Akousist X-ray þ MRI þ clinical 0.592 (0.515e0.661)
y EMC-3 Clinical 0.585 (0.505e0.655)
11 TheRollingPebbles-Filtered X-ray þ MRI þ clinical 0.574 (0.505e0.637)
12 OuluMIPT-2 X-ray 0.570 (0.484e0.645)
13 Inbetweeners-2 X-ray þ clinical 0.569 (0.495e0.636)
14 Inbetweeners-4 X-ray þ clinical 0.567 (0.490e0.636)
y EMC-2 Clinical 0.551 (0.465e0.621)*

y EMC-1 Clinical 0.550 (0.462e0.620)*

y UC-MRI MRI 0.537 (0.467e0.604)*

15 TheRollingPebbles-Full X-ray þ MRI þ clinical 0.530 (0.456e0.601)*

16 TheRollingPebbles-Ensemble X-ray þ MRI þ clinical 0.528 (0.454e0.596)*

17 TheRollingPebbles-0 X-ray þ clinical 0.506 (0.427e0.578)*

18 TheRollingPebbles-1 X-ray þ MRI þ clinical 0.501 (0.423e0.568)*

* Statistically significant difference (P < 0.05) between the submission and the first ranked submission according to the DeLong's test.
y Reference submission.

Table II Osteoarthritis and Cartilage

Area under the receiver operating characteristic curve (ROC AUC) values of the submissions
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radiographic knee OA (combined ACR criteria) within 78 months.
The model with the highest ROC AUC (0.64) used a CNN-based
model to extract information from X-ray images and combined that
informationwith clinical variables (i.e., age, BMI, and KL grade). The
model with the highest BACC (0.59) ensembled three different
models that used automatically extracted X-ray and MRI features
along with clinical variables.

Previous studies have used various clinical risk factors for pre-
dicting the incidence of knee OA5e8. One study developed a logistic
regression model using common risk factors for predicting incident
symptomatic radiographic knee OA and reported an ROC AUC of
0.60 on the OAI data5. Another study used basic risk factors, genetic
and biochemical markers, and radiographical scores and reported
ROC AUCs of 0.75e0.86 for predicting incident radiographic knee
OA in two external cohorts6. One study used a subset of OAI data
and reported an ROC AUC of 0.72 for prediction of moderate/severe
knee OA8. In another study, machine learning models with 112 and
10 predictors had ROC AUCs of 0.79 and 0.77 for prediction of
incident radiographic knee OA9. The models included variables
related to demographics, semi-quantitative MRI scores, cartilage T2
relaxation time values, symptoms, muscle strength, and physical
activity. Lazzarini et al. (2017) used machine learning for prediction
of incident symptomatic radiographic knee OA (ACR criteria) within
30-months in the PROOF study7. The model with the highest ROC
AUC (0.79) included X-ray-based (baseline KL grade and shape
modes), muscle strength, pain, and biochemical variables. Although
the same dataset was used in this challenge, reasons for the better
performance in the aforementioned study may include that they
used the same dataset to train and test their models, availability of
the outcome variable, shorter follow-up, and larger set of clinical
variables.
Please cite this article as: Hirvasniemi J et al., The KNee OsteoArthritis
predict incident symptomatic radiographic knee osteoarthritis from M
10.1016/j.joca.2022.10.001
Various deep learning methods have been used to predict the
incidence and progression of knee OA. Tiulpin et al. (2019) pre-
dicted incidence and progression of radiographic knee OA using X-
ray images and a modified ResNet model that was trained on the
OAI dataset14. They reported ROC AUCs between 0.78 and 0.80 for
prediction of the incidence and progression of OA on the MOST
dataset using an image-based model and a model that combined
image data and risk factors. Another study predicted the progres-
sion of radiographic medial joint space loss using a DenseNet and
X-ray images from the OAI data and reported an ROC AUC of 0.86 for
a model that combined image data and risk factors12. Leung et al.
(2020) predicted the likelihood of a patient undergoing TKR using a
caseecontrol data from the OAI dataset13. They reported an ROC
AUC of 0.87 for prediction of TKR surgery using X-ray images and a
pre-trained ResNet. Tolpadi et al. (2020) predicted the occurrence of
TKR within 5-years in the OAI dataset using a DenseNet15. They
reported ROC AUCs of 0.83 and 0.89 for a model that combined MR
images and risk factors and for a model that combined X-ray and
risk factors, respectively. However, the MRI pipeline outperformed
the X-ray pipeline for subjects without OA and with severe OA.
Nguyen et al. (2021) predicted OA structural prognosis assessed by
KL grade from X-ray and clinical variables and reported BACCs from
0.27 to 0.5537. In general, the performance of the models was lower
in this study than in previous studies. However, direct comparison
of the results is difficult due to differences in image datasets, data
partitions, follow-up periods, evaluation metrics, and outcome
variables. Furthermore, previous methods were not evaluated on a
test set with blinded ground truth.

In this challenge, the model with the highest ROC AUC used a
pre-trained ResNet3413 to extract information from X-ray images
and combined this information with age, BMI, and KL grade to fit a
Prediction (KNOAP2020) challenge: An image analysis challenge to
RI and X-ray images, Osteoarthritis and Cartilage, https://doi.org/



Fig. 1 Osteoarthritis and Cartilage

Receiver operating characteristic curves and respective area under the curve (ROC AUC) values for the three algorithms with the highest ROC
AUC (Inbetweeners-1, OuluMIPT-3, and OuluMIPT-5) and for two reference models (EMC-2 (age, BMI, and mild symptoms) and EMC-3 (age, BMI,
KL grade, and mild symptoms)).
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logistic regression model. The model with the highest BACC used a
Gaussian Naïve Bayesian model to ensemble three different models
that used combinations of X-ray features (ResNet18 and Joint
Shape-Joint Space features38), automatically extracted morpho-
logical cartilage features from sagittal MRI scans39 (segmented
using deep learning40), and clinical variables. These results suggest
that deep learning models pre-trained on a related task and an
ensemble of the diverse models could be used to achieve higher
performance for predicting incident knee OA.

Interestingly, the winning model did not use MRI data. How-
ever, there was a minor increase in ROC AUC values of some
models after adding MRI data to the models. Due to the differ-
ences in the MRI data between the training and test sets, con-
clusions or recommendations on the use of MRI in prediction of
the knee OA incidence are difficult to make. It should be also noted
that the CIs were quite large and, therefore, the rankings should be
interpreted with care. The finding that the final ranking depended
on the metric is not surprising, as similar findings have been re-
ported in previous challenges as well19. We chose ROC AUC and
BACC as the main metrics because they have been widely used in
previous literature and challenges19,41,42 and therefore are com-
parable to previous studies and because they are relatively easy to
interpret. Due to the class imbalance in the test set, we also
Please cite this article as: Hirvasniemi J et al., The KNee OsteoArthritis
predict incident symptomatic radiographic knee osteoarthritis from M
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reported PR AUC values. The obtained PR AUC results indicate the
difficulty in identification of knees that will develop OAwithin the
follow-up.

For this challenge, we decided to split the PROOF dataset into a
small training set and a large test set. The small training set was
meant for fine-tuning. As the aim of this study was to predict the
future incidence of knee OA, the applicability of the methods would
be better if they would not need training or fine-tuning on the
dataset where the prediction is made. Although the participants
were free to use any data to train their methods, all except one
submission used the OAI data for training. When comparing the
results between the KNOAP test set and the OAI test set, better
performance was seen on the OAI test set. One reason may be that
the models were overfitted on the OAI training data. Another
reason may be the difference between the training and test data-
sets, which can cause distribution shifts43. There might be some
differences in the study populations as the OAI datawas collected in
the United States, whereas the test data was collected in the
Netherlands. Imaging machines and image acquisition settings
were also different between the datasets. For example, field
strengths of the MRI scanners differed between the OAI and KNOAP
test set. Although this challenge used a separate test dataset and
the results thus provide insight how well the methods perform on
Prediction (KNOAP2020) challenge: An image analysis challenge to
RI and X-ray images, Osteoarthritis and Cartilage, https://doi.org/



Rank Submission Modality BACC

1 OuluMIPT-3 X-ray þ MRI þ clinical 0.587 (0.520e0.648)
2 OuluMIPT-4 X-ray þ clinical 0.579 (0.512e0.639)
3 OuluMIPT-1 X-ray þ MRI þ clinical 0.578 (0.506e0.639)
4 CCF-Xray X-ray þ clinical 0.571 (0.504e0.629)
5 OuluMIPT-5 X-ray þ MRI þ clinical 0.562 (0.501e0.616)
6 TheRollingPebbles-Filtered X-ray þ MRI þ clinical 0.560 (0.494e0.615)
7 CCF-MR MRI þ clinical 0.553 (0.493e0.617)
8 Akousist X-ray þ MRI þ clinical 0.550 (0.485e0.610)
9 Inbetweeners-1 X-ray þ clinical 0.549 (0.507e0.592)
10 OuluMIPT-2 X-ray 0.547 (0.481e0.605)
11 Inbetweeners-3 X-ray þ clinical 0.541 (0.489e0.592)
12 Inbetweeners-5 X-ray þ clinical 0.531 (0.472e0.585)
13 TheRollingPebbles-Full X-ray þ MRI þ clinical 0.527 (0.469e0.581)
14 Inbetweeners-4 X-ray þ clinical 0.522 (0.493e0.553)
15 TheRollingPebbles-Ensemble X-ray þ MRI þ clinical 0.515 (0.449e0.578)
16 Inbetweeners-2 X-ray þ clinical 0.512 (0.490e0.539)
* UC-MRI MRI 0.506 (0.477e0.542)
* EMC-4 Clinical 0.506 (0.479e0.534)
17 TheRollingPebbles-1 X-ray þ MRI þ clinical 0.504 (0.434e0.562)
* EMC-3 Clinical 0.500 (0.500e0.500)
* EMC-2 Clinical 0.500 (0.500e0.500)
* EMC-1 Clinical 0.500 (0.500e0.500)
18 TheRollingPebbles-0 X-ray þ clinical 0.479 (0.413e0.536)

* Reference submission.

Table III Osteoarthritis and Cartilage

Balanced accuracy (BACC) values of the submissions

Rank Submission Modality PR AUC

1 OuluMIPT-2 X-ray 0.276 (0.199e0.367)
2 OuluMIPT-5 X-ray þ MRI þ clinical 0.271 (0.204e0.364)
3 OuluMIPT-3 X-ray þ MRI þ clinical 0.254 (0.196e0.342)
4 Inbetweeners-1 X-ray þ clinical 0.245 (0.199e0.335)
* EMC-3 Clinical 0.244 (0.189e0.327)
5 CCF-Xray X-ray þ clinical 0.239 (0.188e0.324)
6 OuluMIPT-4 X-ray þ clinical 0.237 (0.187e0.321)
7 CCF-MR MRI þ clinical 0.237 (0.190e0.326)
8 OuluMIPT-1 X-ray þ MRI þ clinical 0.229 (0.179e0.310)
9 Inbetweeners-5 X-ray þ clinical 0.227 (0.186e0.305)
10 Inbetweeners-2 X-ray þ clinical 0.225 (0.179e0.309)
* EMC-4 Clinical 0.224 (0.177e0.291)
* EMC-1 Clinical 0.223 (0.173e0.308)
11 Inbetweeners-3 X-ray þ clinical 0.222 (0.180e0.294)
* EMC-2 Clinical 0.221 (0.172e0.303)
12 Akousist X-ray þ MRI þ clinical 0.216 (0.177e0.290)
13 Inbetweeners-4 X-ray þ clinical 0.210 (0.170e0.283)
14 TheRollingPebbles-Filtered X-ray þ MRI þ clinical 0.198 (0.168e0.258)
15 TheRollingPebbles-Ensemble X-ray þ MRI þ clinical 0.178 (0.149e0.234)
* UC-MRI MRI 0.177 (0.152e0.225)
16 TheRollingPebbles-Full X-ray þ MRI þ clinical 0.175 (0.151e0.222)
17 TheRollingPebbles-0 X-ray þ clinical 0.171 (0.146e0.219)
18 TheRollingPebbles-1 X-ray þ MRI þ clinical 0.167 (0.142e0.217)

* Reference submission.

Table IV Osteoarthritis and Cartilage

Area under the precisionerecall curve (PR AUC) values of the submissions
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Fig. 2 Osteoarthritis and Cartilage

Precision-recall curves and respective area under the curve (PR AUC) values for the three algorithms with the highest PR AUC (OuluMIPT-2,
OuluMIPT-5, and OuluMIPT-3) and for two reference models (EMC-2 (age, BMI, and mild symptoms) and EMC-3 (age, BMI, KL grade, and mild
symptoms)).
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unseen data, it should be noted that the test data consisted of
overweight women aged between 50 and 62 years at baseline. As
age and sex are known predictors of OA, inclusion of only women
with relatively narrow age range could be one reason for lower
performance compared to previous studies and it is unclear how
the submitted models would generalize to other age groups and
sex.

Many of the previous image analysis studies used structural
outcome measure and did not include symptoms in their outcome
variable. This may result in an inaccurate assessment of OA, as the
presence of radiographic OA may be discordant with the presence
of other structural findings and related symptoms44,45. We selected
the ACR criteria because it is a long-used outcome and combines
clinical features with radiography (‘clinical & radiographic ACR
criteria’). We decided to use X-ray-based outcome as the avail-
ability of X-ray images and associated radiological scores is much
greater than the availability of MRI data. In a future challenge, MRI
data could be used as a reference standard provided that there are
large enough datasets with labelled MRI available for model
training. Furthermore, as the performance of all submitted models
was limited in the test set demonstrating that the prediction of
incident symptomatic radiographic knee OA is a complex problem,
Please cite this article as: Hirvasniemi J et al., The KNee OsteoArthritis
predict incident symptomatic radiographic knee osteoarthritis from M
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the impact of other input modalities and data (e.g., genetics) should
be also investigated in the future.

This challenge has some limitations that need to be addressed.
First, although the participants were allowed to use any data to
train their methods, there is relatively limited data readily available
for model training. This is because defining incident symptomatic
radiographic OA requires baseline and follow-up clinical and im-
aging assessment that can be costly and difficult to obtain. Second,
as we did not provide any precomputed features, segmentations of
the MRI scans, or processed images, quite some effort was required
from participants, which may have precluded some researchers
from participating in the challenge. Third, the data contained both
knees of most participants, which may have introduced some bias
into the analysis.

In conclusion, the KNOAP2020 challenge established a bench-
mark for predicting incident symptomatic radiographic knee OA.
This is the first challenge organized on the prediction of knee OA
incidence. The performance of the submitted models on the inde-
pendent test set with blinded ground truth was limited indicating
that accurate prediction of incident symptomatic radiographic knee
OA is a complex and still unsolved problem that requires additional
investigation.
Prediction (KNOAP2020) challenge: An image analysis challenge to
RI and X-ray images, Osteoarthritis and Cartilage, https://doi.org/



Fig. 3 Osteoarthritis and Cartilage

The relationship between the area under the receiver operating characteristic curve (ROC AUC) values of the algorithms on the KNOAP test set
and on the OAI test set. Some submissions used a different OAI test set (dashed markers) than the proposed OAI test set for evaluating their
models.
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