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Abstract
Purpose of the review The human gut harbors a complex community of microbes that influence many processes regulating
musculoskeletal development and homeostasis. This review gives an update on the current knowledge surrounding the impact of
the gut microbiota on musculoskeletal health, with an emphasis on research conducted over the last three years.
Recent findings The gut microbiota and their metabolites are associated with sarcopenia, osteoporosis, osteoarthritis, and rheumatoid
arthritis. The field is moving fast from describing simple correlations to pursue establishing causation through clinical trials.
Summary The gut microbiota and their microbial-synthesized metabolites hold promise for offering new potential alternatives
for the prevention and treatment of musculoskeletal diseases given its malleability and response to environmental stimuli.
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Introduction

The musculoskeletal system is an important determinant of
overall human health. Besides serving as a scaffold for the
body and its locomotive function, it is in constant communi-
cation with other organs in the body through biochemical
signaling, increasingly recognized to harbor fundamental en-
docrine functions. For instance, it has been postulated that
bone can exert critical functions regulating male fertility and
whole-body glucose metabolism [1] and that myokines (i.e.,
cytokines and other peptides released by muscle fibers) can
influence cognition, lipid and glucose metabolism, browning
of white fat, bone formation, endothelial cell function, muscle
hypertrophy, skin structure, and tumor growth [2].

Musculoskeletal disorders constitute a major cause of dis-
ability and morbidity [3]. The economic burden of these dis-
eases on health systems worldwide is predicted to continue

increasing together with life expectancy. This global chal-
lenge requires urgent and feasible solutions. The pharmaco-
logical treatment of most skeletal conditions is broad, ranging
from anti-inflammatories and analgesics to topical prepara-
tions and nutraceuticals [4], whereas no pharmacological
treatment exists for instance for sarcopenia. There is also a
lot of emphasis on lifestyle-modification approaches, includ-
ing physical activity and diet changes to improve the preven-
tion and treatment of musculoskeletal diseases.

Among the novel approximations to preserve musculoskel-
etal health, the study of the gut microbiota (GM) and their
microbial-synthesized metabolites holds promise offering
new potential alternatives for the prevention and treatment
of musculoskeletal diseases, as diet and lifestyle modifications
can impact the composition, richness, and predicted functional
profiles of the gut microbiota [5]. The GM encompasses a set
of over 2000 different kinds of microorganisms residing in our
gastrointestinal tract, encoding 150-fold more genes than the
human genome [6]. These microbial communities are assem-
bled during the first 2 years of life after which they stabilize; as
such, disruption of this colonization at early ages could affect
maturation and developmental pathways [7]. Unsurprisingly,
microbiomemetabolites are now believed to influence numer-
ous diseases, such as cancer, diabetes, cardiovascular disease,
multiple sclerosis and autism spectrum disorder, amid many
others [8]. Besides this, the GM strongly interacts with certain
drugs and influences their action [9]. The GM is now consid-
ered to be the leading edge of scientific research accounting
for more than 9500 research publications in the last year [9],
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and the musculoskeletal field is no exception. The last year
has witnessed an upsurge in research on the viral component
of the microbiome (i.e., the virome), which is dominated by
bacteriophages, determinant in shaping bacterial communities
[10]. Their study is essential to bridge gaps of knowledge on
the ecology and functionality of the GM.

There is an increasing body of evidence showing that the GM
can exert effects in the musculoskeletal system as it modulates
gut permeability, hormonal secretion, and immune response, and
stimulates calcium and vitamin D absorption [11]. Therefore, the
modulation of the GM could be seen as a next-generation treat-
ment for musculoskeletal disorders. The influence of the gut
microbiome on musculoskeletal health and disease processes
can be direct or indirect. For example, the GM can play key roles
in the success of lifestyle interventions aimed at mitigating the
impact of aging in the musculoskeletal system or the develop-
ment of disease. In this review, we will provide an overview of
studies that examined the impact of the GM or their products on
the musculoskeletal system, with special emphasis on the effects
targeting bone homeostasis through the life course.

Gut Microbiome as Determinant
of Musculoskeletal Health and Disease

In this review, we prioritized work published during the last
three years, strategy that may have resulted in underrepresen-
tation of previously published high-quality work and reviews
on this topic [11–19]. We cover in detail the relationship with
skeletal outcomes i.e., bone metabolism/osteoporosis, but also
provide an overview of its significance to muscle function/
sarcopenia, cartilage integrity/osteoarthritis and its role on
the immune response/specifically in rheumatoid arthritis.

Gut Microbiome Effects on Bone Metabolism

Bone metabolism depends on the balance between bone forma-
tion and resorption orchestrated by the action of osteoblasts,
osteocytes, and osteoclasts. Bone mass starts to be accrued after
birth and peaks in young adulthood, decreasing thereafter [20].
A high peak bone mass is associated with reduced osteoporosis
risk in later life, with simulation studies showing that a 10%
increase in peak bone mass delays the onset of osteoporosis by
13 years [21]. Therefore, measures intending to maximize peak
bonemass and strength are important when designing strategies
aimed at reducing the risk of osteoporosis or low bone mass
later in life. Osteoporosis is a disease affecting > 200 million
elderly worldwide, characterized by increased microstructural
deterioration of bone tissue and low bone mass which ultimate-
ly leads to fragility fractures. Despite a range of effective com-
pounds to reduce fracture risk, treatment rates are low among
high-risk individuals [22].

With over 435 publications appearing in PubMed between
the years 2013 and 2019, microbiome research applied to
bone health is clearly booming. This is not unexpected, con-
sidering that host metabolic pathways, the immune system,
and the hormonal environment constitute important determi-
nants of bone metabolism. Consequently, it is rational to think
that the GM also plays an important role in bone homeostasis
(Fig. 1). Indeed, the risk of osteoporosis has been associated
with inter-individual variation of the gut microbiome [23].
Understanding relevant host-microbe interactions would in
principle open the door to better diagnostic and therapeutic
options in osteoporosis management. Here, we summarize
research illustrating different routes by which the GM affects
bone, derived mainly from work in animal models and evi-
dence emerging from human studies. This work has evolved
from describing simple correlations to pursue establishing
causation through clinical trials.

Nutrition and Bone Development

Calcium and vitamin D are key bone health nutrients, whose
depletion or deficit results in adverse skeletal complications
[24]. These nutrients have been considered critical, to the point
that clinical trials aimed at showing the effectiveness of osteopo-
rosis medications systematically include vitamin D and calcium
as part of the treatment regimen [25–27]. Yet, over the last years,
a growing number of studies have questioned the use of
supplementing these nutrients in the general population
[28–30], in contrast to their established benefit in deficient indi-
viduals. During skeletal development, calcium and vitamin D
exert critical roles [31] and the involvement of the GM in the
absorption and activation of these nutrients might then be of
great significance during early ages. Another molecule to con-
sider is vitamin K, which albeit some contradictory findings has
shown a positive effect on bone health [32].

Vitamin D

Childhood vitamin D deficiency is considered a significant
public health issue around the world [33]. Randomized con-
trolled trials of vitamin D supplementation in children with
deficiency have shown improvement on bone mineral density
(BMD) [34]. Besides its direct effect on calcium absorption,
vitamin D regulates the homeostasis of the gut mucosa by
maintaining the integrity of the epithelial barrier and thus the
translocation of microbial metabolites to the host. This regu-
lation also influences the maturation of the immune system
and inflammation responses [35]. With respect to its relation
with the GM, a recent small intervention study showed that
high vitamin D supplementation in adolescent girls (i.e., 9
weekly doses of 50,000 IU) resulted in an increase of
Firmicutes, Bifidobacterium, and Enterococcus and a de-
crease of Bacteroidetes and Lactobacillus [36]. In line with
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these findings, vitamin D receptor (VDR) knock-out (KO)
mice have a microbiome enriched for Bacteroides and
Clostridium but depleted in Lactobacillus [37]. In addition,
these mice had alterations in metabolites specifically produced
from carbohydrate, protein, lipid, and bile acid metabolism
[38]. These studies support the contention that vitamin D reg-
ulates the GM, also supported by the identification of variants
in the VDR gene in a GM genome-wide association study
(GWAS) [39]. Conversely, there is also evidence of the GM
influencing the levels of circulating vitamin D. For instance, a
clinical trial in 127 individuals showed that supplementation
of Lactobacillus reuteri NCIMB 30242 increased mean circu-
lating 25-hydroxyvitamin D by 25.5% after a 9-weeks

intervention [40]. On top of this, bacteria as Streptomyces
griseolus can hydroxilize vitamin D3, essential step to its ac-
tivation, as human metabolic enzymes do [41].

Calcium Absorption

Calcium is the most common mineral in the human body. For
a high peak bone mass to be achieved, the intake of calcium
needs to be adequate, particularly during periods of rapid
growth when absorbed calcium is retained, rather than excret-
ed in the urine [42]. Several studies have demonstrated that
short-chain fatty acids (SCFAs) produced by the GM help
improving calcium absorption in humans and increase bone

Fig. 1 a Influence of gut microbiota on bone. The gut microbiota (GM)
contributes to preserve gut barrier integrity. The GM affects absorption of
calcium and vitamin D, maturation of the immune system, and production
and activation of hormones as estrogens and androgens. Moreover, GM
dysbiosis can result in production of inflammatory cytokines that
translocate intestinal barrier and exert detrimental effects on bone.

Probiotics and prebiotics have shown potential to mitigate or restore
bone health. b Influence of gut microbiota on joints and muscles. The
GM can influence joint health through some mechanisms including host
immunity, and inflammation. Whereas influence of muscle health
involves also glucose intake, energy metabolism, and fiber protein
synthesis
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density and strength in animal models [43–45]. These studies
focused on the advantage of consumption of dietary fibers and
their effect in the increment of SCFAs as well as
Parabacteroides, Bifidobacterium, and Bacteroides relative
abundances (a nice review on the topic can be found [46]).
The importance of these studies lies in the use of prebiotics
(i.e., compounds that induce the growth or activity of benefi-
cial microorganisms) or postbiotics (i.e., factors secreted by
live microorganisms) to correct calcium deficiency without
the need for an increase in calcium-rich foods or supplements.
However, there are studies suggesting that the relationship
between the GM and calcium levels is not unidirectional.
Calcium supplementation has been shown to increase the mi-
crobial diversity and the number of Bifidobacterium sp [47],
Ruminococcaceae, and Akkermansia in mice [48]. Also, in
healthy men, intake of 1000 mg of calcium and 1000 mg of
phosphorus per day, for 8 weeks, increased the fraction of
Clostridium XVIII in the fecal samples [49].

Vitamin K

It has been shown that vitamin K is implicated in bone health
by promoting the osteoblast-to-osteocyte transition, limiting
osteoclastogenesis and intermediating the process of

osteocalcin carboxylation [32]. However, a recent study has
also implicated this vitamin in changes in the composition and
structure of the organic or mineral material [50]. By using
metagenomic analysis of the fecal microbiota from mice as
well as nanoscale chemical analysis of bone tissue, the authors
were able to identify reductions in the concentrations of forms
of vitamin K generated by microbes in mice with impaired
bone strength [50].

Dietary Fibers

Despite the known caveats of nutrition epidemiology such as
compositionality of the data and correlation with varying so-
cial and behavioral factors [51], two large epidemiological
studies have shown a positive effect of fiber intake on bone
outcomes [52, 53]. It is hypothesized that the effect of fibers in
health is at least partially explained by their fermentation to
SCFAs (acetate, propionate, butyrate) by the GM. Besides the
positive effects of SCFAs already described, administration of
propionate (C3) or butyrate (C4) prevents ovariectomy-in-
duced, as well as, inflammation-dependent bone loss in mice
[44]. Butyrate can also inhibit histone deacetylase and stimu-
late osteoblast differentiation [54] and increase bone forma-
tion with increased bone sialoprotein and osteoprotegerin

Fig. 1 (continued)
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production [55]. Moreover, butyrate could stimulate bone for-
mation via T regulatory cell-mediated regulation of WNT10B
expression [56].Mechanistically, C3 and C4 induce metabolic
reprogramming of osteoclasts, resulting in enhanced glycoly-
sis at the expense of oxidative phosphorylation, thereby
downregulating essential osteoclast genes such as TRAF6
and NFATc1 [44]. Reduction of osteoclast differentiation
was also recently observed in the alveolar bone in mice in
response to SCFAs administration [57]. In line with these
results, mice fed with a diet rich in short-chain Galacto-
Oligosaccharides and long-chain Fructo-Oligosaccharides
(scGOS/lcFOS), prebiotics used by GM as substrate for the
production of SCFAs, showed an improved BMD [58].

The Role of Hormones on Bone Metabolism

Insulin-Like Growth Factor 1 (IGF-1)

IGF-1 plays an essential role in regulating skeletal develop-
ment and postnatal growth. Igf1 KO mice exhibit decreased
post-natal growth rate and delayed skeletal ossification,
whereas overexpression of Igf1 significantly increases radial
bone growth in male and female mice [59, 60]. IGF-1 serum
levels have been shown to be higher in mice with an intact
GM as compared with germ-free (GF) mice. As expected, GF
mice showed decreased linear growth, femur length, cortical
thickness, and trabecular bone [59]. Administration of SCFAs
was sufficient to increase circulating IGF-1 [59]. However, a
study performed in a different mice strain showed the opposite
results [61]. These seemingly contradictory findings might be
explained by the specific genetic background of the experi-
mental subjects and/or age-dependent effects. Viruses of the
Irdoviradae family in the human gut virome have been shown
to produce viral insulin/IGF-1-like peptides (VILPs). These
peptides are able to bind tomurine and human IGF-1 receptors
and stimulate cell growth in vitro [62].

Sex Hormones

The estrogen depletion observed in post-menopausal women
adversely impacts bone homeostasis, and one of the principal
regulators of circulating estrogens is the GM [63]. The GM
regulates estrogens through the secretion of β-glucuronidase,
an enzyme that deconjugates estrogens into their active forms.
When this process is impaired through, for example, lower di-
versity of the GM, the decrease in deconjugation results in a
reduction of circulating estrogens [63]. Excessive osteoclast for-
mation and resorption are considered as the key pathological
changes in estrogen-deficiency-induced osteoporosis [64].
Moreover, estrogen deprivation increases intestinal permeability
allowing the translocation of bacteria and increasing the number
of antigens entering the epithelial mucosa what could lead to
systemic inflammation. Compared with normal mice, GF mice

showed less bone loss, following estrogen deficiency, due to the
reduction of osteoclastogenic cytokines [59]. In addition, probi-
otic treatment based on different Lactobacillus species reduced
the expression of osteoclastogenic cytokines and increased the
expression of OPG in bone, protecting mice from ovariectomy
(OVX)-induced bone loss [65].Bifidobacterium longum has also
been reported to alleviate bone loss in OVX rats [66]. Further,
treatments to prevent gut leakage either by antibiotic depletion of
the gut microbiota or administration of Lactobacillus reuteri
were shown to be effective in the treatment of glucocorticoid-
induced osteoporosis in mice [67]. Androgens, other type of sex
hormones, are also essential for bone development and mainte-
nance [68]. Recently, it has been shown that the GM modulates
levels of free hydrotestosterone (DHT), a potent androgen, in the
distal intestine. However, further studies are necessary to clarify
if the GM has the capacity to regulate androgen metabolism and
action, also at extra intestinal locations [68].

Role of the Microbiota in Immunity and inflammation

The GM plays a central role in the maturation of the immune
system. It is involved in the production of circulating cyto-
kines and the development of lymphoid cells, particularly of
T-helper lymphocytes. With age and particularly in response
to estrogen deficiency, T cells increase their production of
pro-inflammatory and pro-osteoclastogenic cytokines, such
as TNF-α and RANKL [69]. The ability of the GM to increase
these cytokines and reduce cortical bone in mice is actually
dependent on NOD1 and NOD2 signaling which elicits an
inflammatory response [70]. Studies have also shown that
activation of the toll-like receptor 5 (TLR5), another pattern
recognition receptor used by the innate immune system,
prompts osteoclast formation and bone loss in mice.
Besides, TLR5-KO mice present with increasing periosteal
expansion [71], which is normalized when there is a disrup-
tion of the GM, in line with a mediation role of the GM.

Exercise is another integral component of osteoporosis
management, as physical activity increases BMD and reduces
inflammatory markers [72]. Recently, it was proposed that
exercise may prevent bone loss through changes in GM.
This was based on the results of an activity study in mice,
where members of the Bifidobacteriaceae family, known to
reduce intestinal inflammation, positively correlated with
BMD [73].

Clinical Studies Assessing the Effect of GM
in Osteoporosis

Observational Studies

An association study by Das et al. found a higher abundance
of Actinomyces, Eggerthella, Clostridium Cluster XlVa, and
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Lactobacillus genera in individuals with osteoporosis (N = 60)
compared with individuals with normal BMD (N = 60) and a
lower abundance of Escherichia/Shigella and Veillonella spe-
cies in the osteoporotic individuals compared with an
osteopenic group (N = 61) [74]. No statistical differences were
found in diversity metrics among the groups [74]. In contrast,
another study found higher diversity and a higher abundance
of Dialister and Faecalibacterium in individuals with osteo-
porosis (N = 48) as compared with individuals with normal
levels of BMD (N = 48) [75], whereas two Chinese studies,
each in about hundred individuals, reported correlations be-
tween the abundance of Bifidobacterium, Roseburia, and
Lactobacillus [76] and Allisonella, Klebsiella, and
Megasphaera [77] and BMD, respectively. These inconsistent
results show the importance of using adequate sample sizes
and controlling for multiple testing when investigating possi-
ble new associations.

Microbiome-Based Clinical Trials

Two different clinical trials carried out in Sweden have shown a
substantial decrease in bone loss in postmenopausal women
after probiotic use. The first one, enrolled 90 postmenopausal
women and showed that after 1 year of daily supplementation
with Lactobacillus reuteri 6475, the treatment group presented
reduced volumetric BMD loss at the tibia (mean difference
between groups =1.02%; 95% CI: 0.02–2.03%) [78]. The sec-
ond one focused on bone loss at the lumbar spine (LS). Two
hundred thirty-two early postmenopausal women completed
the trial in which half of them (116) received probiotic treat-
ment consisting of a daily dose of three Lactobacillus strains
(Lactobacillus paracasei DSM13434, Lactobacillus plantarum
DSM 15312, and Lactobacillus plantarum DSM 15313;
1×10-10 colony-forming units per capsule) per 12 months or
placebo. LS-DXA scans were taken the day of intake and 1
year later when the treatment ended. Lactobacillus treatment
reduced the LS-BMD loss compared with placebo (mean dif-
ference 0.71%, 95% CI 0.06 to 1.35) [79]. The LS-BMD loss
was significant in the placebo group (–0.72%, −1.22 to −0.22),
whereas no bone loss was observed in the Lactobacillus-treated
group (–0.01%, −0.50 to 0.48) [79]. The authors concluded that
the Lactobacillus strains seem to target mechanisms with dif-
ferential action on trabecular and cortical bone. Conversely, a
clinical trial in 76 healthy postmenopausal Japanese women
observed a positive effect of administration of Bacillus subtilis
C-3102 for 24 weeks in total hip BMD (placebo = 0.83 ±
0.63%, C-3102 = 2.53 ± 0.52%, p =0.043), whilst no significant
effect was observed in the LS-BMD of the participants taking
the probiotic as compared with the placebo group. Based on
microbiome profiles, urinary type I collagen cross-linked N-
telopeptide and tartrate-resistant acid phosphatase isoform 5b
measurements the authors presume that C-3102 improves
BMD by inhibiting bone resorption and modulating the GM

[80]. In a study comprising 50 healthy post-menopausal Iranian
women [81], a lower serum collagen type 1 cross-linked C-
telopeptide (CTX) was also detected in the intervention group
as compared with the placebo group. The intervention group,
comprising 25 women, took a multispecies probiotic capsule
(GeriLact) daily for 6 months. GeriLact contains Lactobacillus
casei, Bifidobacterium longum, Lactobacillus acidophilus,
Lactobacillus rhamnosus, Lactobacillus bulgaricus,
Bifidobacterium breve, and Streptococcus thermophilus [81].
The presence of reduced bone turnover was also supported by
lower levels of bone-specific alkaline phosphatase (BALP) in
the intervention group after treatment [81].

Gut Microbiome Effects on Skeletal Muscle Mass and
Function

Even if the gut-muscle axis has not been studied to the extent
of the gut-bone axis, this field is gaining momentum [82–88].
This axis may be involved in the pathogenesis of muscle
wasting disorders through the transduction of pro-anabolic
stimuli from dietary nutrients, modulation of inflammation
and insulin sensitivity among others (Fig. 1) [19]. It has been
shown that skeletal muscle mass and physical function are
reduced in GF and in antibiotic-treated mice [83, 85, 89].
Transplanting the GM from conventionally raised mice to
GF mice resulted in an increase in skeletal muscle mass and
a reduction in muscle atrophy markers [85]. Moreover, merely
treatment with SCFAs partly reversed skeletal muscle impair-
ments in these mice [85]. Another study demonstrated that the
reduced physical fitness, exercise performance, and energy
metabolism in young GF mice could be improved by inocu-
lation of either Eubacterium rectale, Lactobacillus plantarum
TWK10, or Clostridium coccoides [87]. Similarly, reduced
running endurance in conjunction with increased ex vivomus-
cle fatigability was found in antibiotic-treated mice [83],
which could be entirely normalized by natural reseeding of
the gut microbiota [83]. In humans, genus Prevotella and
Barnesiella have been shown to be more abundant in the fecal
samples of elderly with higher lean mass and better physical
performance as compared with low-functioning elderly in a
small study (high-functioning, N = 18; low-functioning, N =
11) [88]. Colonization of GF mice with the human microbiota
of the highly functional individuals resulted in higher grip-
strength in these mice. However, no differences were ob-
served in total lean mass or endurance between mice coloni-
zation with the high-functioning human microbiota or low-
functioning microbiota [88]. Currently, there is an ongoing
clinical trial in Ireland aiming to assess the effect of Bacillus
coagulans as probiotic on the rates of muscle protein synthesis
[90]. If Bacillus coagulans supplementation can improve
muscle protein synthesis rates following plant protein con-
sumption, then that could embody an effective and
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environmentally sensitive strategy to attenuate adverse age-
related loss of muscle mass and physical function in the
elderly.

Gut Microbiome Effects on the Joints

Osteoarthritis (OA) is the most common chronic degenerative
joint disease and a leading cause for joint disability worldwide
[91]. Currently, no curative treatment exists for OA. Well-
established risk factors for OA are obesity and macrophage-
mediated inflammation, both linked to the GM (Fig. 1) [92,
93]. In principle, different mechanisms by which the GM can
reduce obesity would have a high impact on modifying OA
risk. Accordingly, mice following a long-term high-fat diet are
prone to develop obesity-mediated OA. However, this risk is
reduced by intervention with Lactobacillus paracasei subsp.
paracasei M5 or the prebiotic oligofructose [94]. In addition, a
small-scale study recently demonstrated worsening of OA pa-
thology in the presence of serum and synovial fluid containing
high bacterial LPS (lipopolysaccharides) levels with activated
macrophages in the knee joint capsule and synovium [95].
Moreover, the abundance of Streptococcus species was re-
cently associated with increased knee pain and knee joint in-
flammation in a large population study of older adults [96].
Clinical trials in humans have already shown a positive effect
of Lactobacillus casei Shirota [97] and Streptococcus
thermophilus [98] in the progression of knee OA.

Gut Microbiome Effects on the Immune Response

Rheumatoid arthritis (RA) is an autoimmune disease in which
systemic chronic inflammation leads to joint destruction.
Altered composition of the oral and gut microbiota has been
observed in RA both in mice and human studies (reviewed
recently in [17]). Several GM bacteria species have been
found to be enriched in RA cases, among which Prevotella
species [99] and different species of Lactobacillus. Also, the
oral microbiome species Cryptobacterium curtum has been
found to be enriched in RA cases. This bacterium is capable
of producing large amounts of citrulline which is known for
acting as an autoantigen in RA [100]. Also in relation to RA,
Lactobacillus casei was able to suppress the induction of RA
and protect bones from destruction in a study using rats [101].

Future Perspectives

It is clear that the GM presents an exciting new frontier in
musculoskeletal research. Although the potential benefit of
GM research is high, several hurdles still need to be overcome
before GM research can be translated to the clinic. The major-
ity of the GM research related to (musculoskeletal) health has
been done using 16S ribosomal RNA (rRNA) sequencing.

The 16S rRNA technique, while technically robust, has limit-
ed resolution to identify specific bacteria related to disease
(i.e., taxonomical orders bellow genus level) or to assess func-
tional potential, as opposed to for example shotgun
metagenomics sequencing. This limitation hampers the possi-
bility of translating microbiome research to the development
of advanced therapeutics. Moreover, most microbiome studies
have been carried out in small sample sizes that are not repre-
sentative of the population and can be hindered by the high
inter-individual variability of the GM and high dimensionality
of the data. On top of this, methods and procedures for col-
lection, extraction, and analysis of microbiome data are not
standardized across studies, which has led to a lack of repro-
ducibility in the field. Therefore, harmonization of large-scale
studies will allow guarantying reproducible science. As large
GWAS of GM variability continue to emerge, leveraging ge-
netic information to construct instrumental variables allowing
systematic exploration of unconfounded relationships be-
tween GM and musculoskeletal traits starts to materialize
using the Mendelian randomization approach [102].
Recently, the relationship of a microbiome-based polygenic
risk score and BMD was assessed in the UK Biobank and
found only one nominal significant association with pelvic
BMD [103]. However, the GM-GWAS selected by the au-
thors as the base for their analyses were rather small [103].
The recent publication of the MiBioGen consortium meta-
analysis including more than 18,000 individuals [104] opens
the opportunity to evaluate the association of multiple mi-
crobes and musculoskeletal health outcomes in well-
powered settings. This strategy, will also allow the efficient
designs of clinical trials, with increased likelihood of success.
Altogether, the efficacious clinical trials summarized here are
likely to fuel further studies and the development of new ther-
apies based on our ever-growing knowledge of the relation of
GM and bone metabolism. Moreover, patient surveys in the
USA have shown the great acceptance of prebiotics and
probiotics suggesting that microbiome-based therapies could
increase treatment compliance in patients [105, 106].

Last but not least, the characterization of the gut virome is
still in its infancy. Yet, viruses can alter microbiota structure
by infecting specific populations of bacteria as well as trigger
apoptosis or induce alterations in host cells [107]. Therefore,
they are intrinsically involved in the maturation of the immune
system and the inflammation process. Given these findings, it
is timely to evaluate the potential role of the gut virome in
musculoskeletal health and disease.

Concluding Remarks

This review highlights studies in which the GM is shown to
have not just an association but also a key modulatory role in
the musculoskeletal system. There is substantial space for
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improving the current management of musculoskeletal dis-
eases, and the GM-derived treatments are an exciting point
of inflection with growing number of opportunities. This in-
creasing body of evidence, together with the GM response to
environmental stimuli and malleability, positions it as a po-
tential crucial driver of the personalized healthcare revolution,
including musculoskeletal diseases.
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