576 research outputs found
Citation analysis of the scientific publications of Britton Chance in ISI citation indexes
Britton Chance was a pioneer in many scientific fields such as enzymatic reaction kinetics, bioenergetics, metabolism, in vivo NMR, and biophotonics. As an engineer, physical chemist, physicist, physiologist, biophysicist, biochemist, innovator and educator, he had worked in diversified fields over extended periods between 1926 until his death in 2010, at the age of 97. In order to illustrate his scientific career and great impact on research from a new perspective, we employ scientometric analysis tools to analyze the publications of Britton Chance with data downloaded from the ISI Citation Indexes in April 2013. We included articles, reviews and proceeding papers but excluded meeting abstracts. In total, we obtained 1023 publication records with 1236 authors in 266 journals with 17,114 citations from 1945 to 2013. We show the annual publications and citations that Britton Chance received from 1945 to 2013, and generate HistCite maps on the basis of the global citations (GCS) and local (self) citations (LCS) to show the citation relationships among the top-30 publications of Britton Chance. Metabolism and the development of physical methods to probe it appear to be the connecting thread of the lifelong research of Britton Chance. Furthermore, we generate the journal map and co-authorship map to show the broad scope of research topics and collaborators and the high impacts of the scientific oeuvre of Britton Chance ranging from physics, engineering, chemistry and biology to medicine
Two-tape finite automata with quantum and classical states
{\it Two-way finite automata with quantum and classical states} (2QCFA) were
introduced by Ambainis and Watrous, and {\it two-way two-tape deterministic
finite automata} (2TFA) were introduced by Rabin and Scott. In this paper we
study 2TFA and propose a new computing model called {\it two-way two-tape
finite automata with quantum and classical states} (2TQCFA). First, we give
efficient 2TFA algorithms for recognizing languages which can be recognized by
2QCFA. Second, we give efficient 2TQCFA algorithms to recognize several
languages whose status vis-a-vis 2QCFA have been posed as open questions, such
as . Third, we show that
can be recognized by {\it -tape
deterministic finite automata} (TFA). Finally, we introduce {\it
-tape automata with quantum and classical states} (TQCFA) and prove that
can be recognized by TQCFA.Comment: 25 page
Effects of bearing clearance on the chatter stability of milling process
In the present study, the influences of the bearing clearance, which is a common fault for machines, to the chatter stability of milling process are examined by using numerical simulation method. The results reveal that the presence of bearing clearance could make the milling process easier to enter the status of chatter instability and can shift the chatter frequency. In addition, the spectra analysis to vibration signals obtained under the instable milling processes show that the presence of bearing clearance could introduce more frequency components to the vibration responses but, however, under both the stable and instable milling processes, the generated frequency components will not violate the ideal spectra structures of the vibration responses of the milling process, which are usually characterized by the tooth passing frequency and its associated higher harmonics for the stable milling process and by the complex coupling of the tooth passing frequency and the chatter frequency for the instable milling process. This implies that, even under the case with bearing clearance fault, the stability of the milling process can still be determined by viewing the frequency spectra of the vibration responses. Moreover, the phenomena of the chatter frequency shift and the generation of more components provide potential ways to detect the bearing clearance in machines. (C) 2010 Elsevier Ltd. All rights reserved
Developing machine learning model to estimate the shear capacity for RC beams with stirrups using standard building codes
Shear failure in reinforced concrete (RC) beams with a brittle nature is a serious safety concern. Due to the inadequate description of the phenomenology of shear resistance (the shear behavior of RC beams), several of the existing shear design equations for RC beams with stirrups have high uncertainty. Therefore, the predicted models with higher accuracy and lower variability are critical for the shear design of RC beams with stirrups. To predict the ultimate shear strength of RC beams with stirrups, machine learning (ML)-based models are proposed in the present research. The models were created using a database of 201 experimental RC beams with stirrups gathered from earlier investigations for training and testing of the ML method, with 70% of the data being used for model training and the rest for testing. The performance of suggested models was evaluated using statistical comparisons between experimental results and state-of-the-art current shear design models (ACI 318–08, Canadian code, GB 510010–2010, NZS 3101, BNBC 2015). The suggested machine learning-based models are consistent with experimentally observed shear strength and current predictive models, but they are more accurate and impartial. To understand the model very well, sensitivity analysis is determining as input values for a specific variable affect the outcomes of a mathematical model. To compare the results with different machine learning models in training and testing R2 , RMSE and MSE are also established. Finally, proposed ML models such as gradient boost regressor and random forest give higher accuracy to evaluate the shear strength of the reinforcement concrete beam using stirrups.Md Nasir Uddin, Kequan Yu, Ling, zhi Li, Junhong Ye, T. Tafsirojjaman, Wael Alhadda
A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles
Conservation Biolog
Effective uptake of submicrometre plastics by crop plants via a crack-entry mode
Most microplastics are emitted, either directly or via the degradation of plastics, to the terrestrial environment and accumulate in large amounts in soils, representing a potential threat to terrestrial ecosystems. It is very important to evaluate the uptake of microplastics by crop plants because of the ubiquity of microplastics in wastewaters often used for agricultural irrigation worldwide. Here, we analyse the uptake of different microplastics by crop plants (wheat (Triticum aestivum) and lettuce (Lactuca sativa)) from treated wastewater in hydroponic cultures and in sand matrices or a sandy soil. Our results provide evidence in support of submicrometre- and micrometre-sized polystyrene and polymethylmethacrylate particles penetrating the stele of both species using the crack-entry mode at sites of lateral root emergence. This crack-entry pathway and features of the polymeric particles lead to the efficient uptake of submicrometre plastic. The plastic particles were subsequently transported from the roots to the shoots. Higher transpiration rates enhanced the uptake of plastic particles, showing that the transpirational pull was the main driving force of their movement. Our findings shed light on the modes of plastic particle interaction with plants and have implications for crops grown in fields contaminated with wastewater treatment discharges or sewage sludges.The presence of microplastics in wastewaters used for irrigation highlights the urgency of analysing the possible uptake of microplastics by crop plants. This study shows that submicrometre and micrometre plastic particles from treated wastewater enter the steles of crop plants via a crack entry at sites of lateral root emergence.Environmental Biolog
Characterization of a novel 4.0-kb y-type HMW-GS from Eremopyrum distans
A novel 4.0-kb Fy was sequenced and bacterially expressed. This gene, the largest y-type HMW-GS currently reported, is 4,032-bp long and encodes a mature protein with 1,321 amino acid (AA) residues. The 4.0-kb Fy shows novel modifications in all domains. In the N-terminal, it contains only 67 AA residues, as three short peptides are absent. In the repetitive domain, the undecapeptide RYYPSVTSPQQ is completely lost and the dodecapeptide GSYYPGQTSPQQ is partially absent. A novel motif unit, PGQQ, is present in addition to the two standard motif units PGQGQQ and GYYPTSPQQ. Besides, an extra cysteine residue also occurs in the middle of this domain. The large molecular mass of the 4.0-kb Fy is mainly due to the presence of an extra-long repetitive domain with 1,279 AA residues. The novel 4.0-kb Fy gene is of interest in HMW-GS gene evolution as well as to wheat quality improvement with regard to its longest repetitive domain length and extra cysteines residues
Expression, purification and characterization of the soluble Cu-A domain of cytochrome c oxidase of Paracoccus versutus
Macromolecular Biochemistr
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
- …