2,134 research outputs found

    Charge Qubit Storage and Its Engineered Decoherence via Microwave Cavity

    Full text link
    We study the entanglement of the superconducting charge qubit with the quantized electromagnetic field in a microwave cavity. It can be controlled dynamically by a classical external field threading the SQUID within the charge qubit. Utilizing the controllable quantum entanglement, we can demonstrate the dynamic process of the quantum storage of information carried by charge qubit. On the other hand, based on this engineered quantum entanglement, we can also demonstrate a progressive decoherence of charge qubit with quantum jump due to the coupling with the cavity field in quasi-classical state.Comment: 6 pages, 4 figure

    Effective Dynamic Range in Measurements with Flash Analog-to-Digital Convertor

    Full text link
    Flash Analog to Digital Convertor (FADC) is frequently used in nuclear and particle physics experiments, often as the major component in big multi-channel systems. The large data volume makes the optimization of operating parameters necessary. This article reports a study of a method to extend the dynamic range of an 8-bit FADC from the nominal 28\rm{2^8} value. By comparing the integrated pulse area with that of a reference profile, good energy reconstruction and event identification can be achieved on saturated events from CsI(Tl) crystal scintillators. The effective dynamic range can be extended by at least 4 more bits. The algorithm is generic and is expected to be applicable to other detector systems with FADC readout.Comment: 19 pages, 1 table, 10 figure

    A time-domain recursive method to analyse transient wave propagation across rock joints

    Get PDF
    The present investigation is concerned with transient wave propagation in a rock mass with a set of parallel joints by using a recursive method. According to the displacement field of a rock mass with a set of parallel joints, the interaction between four plane waves (two longitudinal-waves and two transverse-waves) and a joint is analysed first. With the displacement discontinuity model and the time shifting function, the wave propagation equation based on the recursive method in time domain for obliquely longitudinal-(P) or transverse-(S) waves across a set of parallel joints is established. The joints are assumed linearly elastic. The analytical solution obtained by the proposed method is compared with the existing results for some special cases, including oblique incidence across a single joint and normal incidence across a set of parallel joints. By verification, it is found that the solutions by the proposed method match very well with the existing methods. The applicability and limitations of the new method are then discussed for incident waves with different propertie

    Scaling of Aharonov-Bohm couplings and the dynamical vacuum in gauge theories

    Full text link
    Recent results on the vacuum polarization induced by a thin string of magnetic flux lead us to suggest an analogue of the Copenhagen `flux spaghetti' QCD vacuum as a possible mechanism for avoiding the divergence of perturbative QED, thus permitting consistent completion of the full, nonperturbative theory. The mechanism appears to operate for spinor, but not scalar, QED.Comment: 11 pages, ITP-SB-92-40, (major conceptual evolution from original

    A novel quantum key distribution scheme with orthogonal product states

    Get PDF
    The general conditions for the orthogonal product states of the multi-state systems to be used in quantum key distribution (QKD) are proposed, and a novel QKD scheme with orthogonal product states in the 3x3 Hilbert space is presented. We show that this protocol has many distinct features such as great capacity, high efficiency. The generalization to nxn systems is also discussed and a fancy limitation for the eavesdropper's success probability is reached.Comment: 4 Pages, 3 Figure

    Nonrelativistic hydrogen type stability problems on nonparabolic 3-manifolds

    Full text link
    We extend classical Euclidean stability theorems corresponding to the nonrelativistic Hamiltonians of ions with one electron to the setting of non parabolic Riemannian 3-manifolds.Comment: 20 pages; to appear in Annales Henri Poincar

    Pulse Shape Discrimination Techniques in Scintillating CsI(Tl) Crystals

    Full text link
    There are recent interests with CsI(Tl) scintillating crystals for Dark Matter experiments. The key merit is the capability to differentiate nuclear recoil (nr) signatures from the background β/γ\beta / \gamma-events due to ambient radioactivity on the basis of their different pulse shapes. One of the major experimental challenges is to perform such pulse shape analysis in the statistics-limited domain where the light output is close to the detection threshold. Using data derived from measurements with low energy γ\gamma's and nuclear recoils due to neutron elastic scatterings, it was verified that the pulse shapes between β/γ\beta / \gamma-events are different. Several methods of pulse shape discrimination are studied, and their relative merits are compared. Full digitization of the pulse shapes is crucial to achieve good discrimination. Advanced software techniques with mean time, neural network and likelihood ratios give rise to satisfactory performance, and are superior to the conventional Double Charge method commonly applied at higher energies. Pulse shape discrimination becomes effective starting at a light yield of about 20 photo-electrons. This corresponds to a detection threshold of about 5 keV electron-equivalence energy, or 40-50 keV recoil kinetic energy, in realistic experiments.Comment: 20 pages, 7 figure

    Measurement of the Intrinsic Radiopurity of Cs-137/U-235/U-238/Th-232 in CsI(Tl) Crystal Scintillators

    Full text link
    The inorganic crystal scintillator CsI(Tl) has been used for low energy neutrino and Dark Matter experiments, where the intrinsic radiopurity is an issue of major importance. Low-background data were taken with a CsI(Tl) crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape discrimination capabilities of the crystal, as well as the temporal and spatial correlations of the events, provide powerful means of measuring the intrinsic radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event selection algorithms are described, with which the decay half-lives of Po-218, Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the contamination levels, their concentration gradients with the crystal growth axis, and the uniformity among different crystal samples, are reported. The radiopurity in the U-238 and Th-232 series are comparable to those of the best reported in other crystal scintillators. Significant improvements in measurement sensitivities were achieved, similar to those from dedicated massive liquid scintillator detector. This analysis also provides in situ measurements of the detector performance parameters, such as spatial resolution, quenching factors, and data acquisition dead time.Comment: 28 pages, 12 figure

    In-Plane Magnetic Anisotropy In RF Sputtered Fe-N Thin Films

    Full text link
    We have fabricated Fe(N) thin films with varied N2 partial pressure and studied the microstructure, morphology, magnetic properties and resistivity by using X-ray diffraction, atomic force microscopy, transmission electron microscopy, vibrating-sample magnetometer and angle-resolved M-H hysteresis Loop tracer and standard four-point probe method. In the presence of low N2 partial pressure, Fe(N) films showed a basic bcc a-Fe structure with a preferred (110) texture. A variation of in-plane magnetic anisotropy of the Fe(N) films was observed with the changing of N component. The evolution of in-plane anisotropy in the films was attributed to the directional order mechanism. Nitrogen atoms play an important role in refining the a-Fe grains and inducing uniaxial anisotropy.Comment: 11 pages, 6 figure
    corecore