1,855 research outputs found
Gravitational Leptogenesis and Neutrino Mass Limit
Recently Davoudiasl {\it et al} \cite{steinhardt} have introduced a new type
of interaction between the Ricci scalar and the baryon current ,
and proposed a mechanism for baryogenesis, the
gravitational baryogenesis. Generally, however, vanishes in
the radiation dominated era. In this paper we consider a generalized form of
their interaction, and study again the possibility
of gravitational baryo(lepto)genesis. Taking , we will show
that does not vanish and the
required baryon number asymmetry can be {\it naturally} generated in the early
universe.Comment: 4 page
Interacting Ghost Dark Energy in Non-Flat Universe
A new dark energy model called "ghost dark energy" was recently suggested to
explain the observed accelerating expansion of the universe. This model
originates from the Veneziano ghost of QCD. The dark energy density is
proportional to Hubble parameter, , where is a
constant of order and is
QCD mass scale. In this paper, we extend the ghost dark energy model to the
universe with spatial curvature in the presence of interaction between dark
matter and dark energy. We study cosmological implications of this model in
detail. In the absence of interaction the equation of state parameter of ghost
dark energy is always and mimics a cosmological constant in the
late time, while it is possible to have provided the interaction is
taken into account. When , all previous results of ghost dark energy in
flat universe are recovered. To check the observational consistency, we use
Supernova type Ia (SNIa) Gold sample, shift parameter of Cosmic Microwave
Background radiation (CMB) and the Baryonic Acoustic Oscillation peak from
Sloan Digital Sky Survey (SDSS). The best fit values of free parameter at
confidence interval are: ,
and . Consequently
the total energy density of universe at present time in this model at 68% level
equates to .Comment: 19 pages, 9 figures. V2: Added comments, observational consequences,
references, figures and major corrections. Accepted for publication in
General Relativity and Gravitatio
Interacting Dipoles from Matrix Formulation of Noncommutative Gauge Theories
We study the IR behavior of noncommutative gauge theory in the matrix
formulation. We find that in this approach, the nature of the UV/IR mixing is
easily understood, which allows us to perform a reliable calculation of the
quantum effective action for the long wavelength modes of the noncommutative
gauge field. At one loop, we find that our description is weakly coupled only
in the supersymmetric theory. At two loops, we find non-trivial interaction
terms suggestive of dipole degrees of freedom. These dipoles exhibit a channel
duality reminiscent of string theory.Comment: LaTeX 11 pages, 4 figures; v.2 minor changes and some references
added; v.3 many more technical details added and significantly different
presentation, use REVTeX 4, to appear in PR
Does femtosecond time-resolved second-harmonic generation probe electron temperatures at surfaces?
Femtosecond pump-probe second-harmonic generation (SHG) and transient linear
reflectivity measurements were carried out on polycrystalline Cu, Ag and Au in
air to analyze whether the electron temperature affects Fresnel factors or
nonlinear susceptibilities, or both. Sensitivity to electron temperatures was
attained by using photon energies near the interband transition threshold. We
find that the nonlinear susceptibility carries the electron temperature
dependence in case of Ag and Au, while for Cu the dependence is in the Fresnel
factors. This contrasting behavior emphasizes that SHG is not a priori
sensitive to electron dynamics at surfaces or interfaces, notwithstanding its
cause.Comment: 11 pages, 4 figure
Critical behavior of the planar magnet model in three dimensions
We use a hybrid Monte Carlo algorithm in which a single-cluster update is
combined with the over-relaxation and Metropolis spin re-orientation algorithm.
Periodic boundary conditions were applied in all directions. We have calculated
the fourth-order cumulant in finite size lattices using the single-histogram
re-weighting method. Using finite-size scaling theory, we obtained the critical
temperature which is very different from that of the usual XY model. At the
critical temperature, we calculated the susceptibility and the magnetization on
lattices of size up to . Using finite-size scaling theory we accurately
determine the critical exponents of the model and find that =0.670(7),
=1.9696(37), and =0.515(2). Thus, we conclude that the
model belongs to the same universality class with the XY model, as expected.Comment: 11 pages, 5 figure
Progress Toward Efficient Laminar Flow Analysis and Design
A multi-fidelity system of computer codes for the analysis and design of vehicles having extensive areas of laminar flow is under development at the NASA Langley Research Center. The overall approach consists of the loose coupling of a flow solver, a transition prediction method and a design module using shell scripts, along with interface modules to prepare the input for each method. This approach allows the user to select the flow solver and transition prediction module, as well as run mode for each code, based on the fidelity most compatible with the problem and available resources. The design module can be any method that designs to a specified target pressure distribution. In addition to the interface modules, two new components have been developed: 1) an efficient, empirical transition prediction module (MATTC) that provides n-factor growth distributions without requiring boundary layer information; and 2) an automated target pressure generation code (ATPG) that develops a target pressure distribution that meets a variety of flow and geometry constraints. The ATPG code also includes empirical estimates of several drag components to allow the optimization of the target pressure distribution. The current system has been developed for the design of subsonic and transonic airfoils and wings, but may be extendable to other speed ranges and components. Several analysis and design examples are included to demonstrate the current capabilities of the system
Euler configurations and quasi-polynomial systems
In the Newtonian 3-body problem, for any choice of the three masses, there
are exactly three Euler configurations (also known as the three Euler points).
In Helmholtz' problem of 3 point vortices in the plane, there are at most three
collinear relative equilibria. The "at most three" part is common to both
statements, but the respective arguments for it are usually so different that
one could think of a casual coincidence. By proving a statement on a
quasi-polynomial system, we show that the "at most three" holds in a general
context which includes both cases. We indicate some hard conjectures about the
configurations of relative equilibrium and suggest they could be attacked
within the quasi-polynomial framework.Comment: 21 pages, 6 figure
Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes
© 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.Peer reviewe
Coupling of Linearized Gravity to Nonrelativistic Test Particles: Dynamics in the General Laboratory Frame
The coupling of gravity to matter is explored in the linearized gravity
limit. The usual derivation of gravity-matter couplings within the
quantum-field-theoretic framework is reviewed. A number of inconsistencies
between this derivation of the couplings, and the known results of tidal
effects on test particles according to classical general relativity are pointed
out. As a step towards resolving these inconsistencies, a General Laboratory
Frame fixed on the worldline of an observer is constructed. In this frame, the
dynamics of nonrelativistic test particles in the linearized gravity limit is
studied, and their Hamiltonian dynamics is derived. It is shown that for
stationary metrics this Hamiltonian reduces to the usual Hamiltonian for
nonrelativistic particles undergoing geodesic motion. For nonstationary metrics
with long-wavelength gravitational waves (GWs) present, it reduces to the
Hamiltonian for a nonrelativistic particle undergoing geodesic
\textit{deviation} motion. Arbitrary-wavelength GWs couple to the test particle
through a vector-potential-like field , the net result of the tidal forces
that the GW induces in the system, namely, a local velocity field on the system
induced by tidal effects as seen by an observer in the general laboratory
frame. Effective electric and magnetic fields, which are related to the
electric and magnetic parts of the Weyl tensor, are constructed from that
obey equations of the same form as Maxwell's equations . A gedankin
gravitational Aharonov-Bohm-type experiment using to measure the
interference of quantum test particles is presented.Comment: 38 pages, 7 figures, written in ReVTeX. To appear in Physical Review
D. Galley proofs corrections adde
High Altitude test of RPCs for the ARGO-YBJ experiment
A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory
(Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive
Air Showers was studied. Efficiency and time resolution measurements at the
pressure and temperature conditions typical of high mountain laboratories, are
reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met
- …
