1,284 research outputs found

    Rhodamine-RCA in vivo labeling guided laser capture microdissection of cancer functional angiogenic vessels in a murine squamous cell carcinoma mouse model

    Get PDF
    BACKGROUND: Cancer growth, invasion and metastasis are highly related to tumor-associated neovasculature. The presence and progression of endothelial cells in cancer is chaotic, unorganized, and angiogenic vessels are less functional. Therefore, not all markers appearing on the chaotic endothelial cells are accessible if a drug is given through the vascular route. Identifying endothelial cell markers from functional cancer angiogenic vessels will indicate the accessibility and potential efficacy of vascular targeted therapies. RESULTS: In order to quickly and effectively identify endothelial cell markers on the functional and accessible tumor vessels, we developed a novel technique by which tumor angiogenic vessels are labeled in vivo followed by Laser Capture Microdissection of microscopically isolated endothelial cells for genomic screening. Female C3H mice (N = 5) with established SCCVII tumors were treated with Rhodamine-RCA lectin by tail vein injection, and after fluorescence microscopy showed a successful vasculature staining, LCM was then performed on frozen section tissue using the PixCell II instrument with CapSure HS caps under the Rhodamine filter. By this approach, the fluorescent angiogenic endothelial cells were successfully picked up. As a result, the total RNA concentration increased from an average of 33.4 ng/ul +/- 24.3 (mean +/- S.D.) to 1913.4 ng/ul +/- 164. Relatively pure RNA was retrieved from both endothelial and epithelial cells as indicated by the 260/280 ratios (range 2.22–2.47). RT-PCR and gene electrophoresis successfully detected CD31 and Beta-Actin molecules with minimal Keratin 19 expression, which served as the negative control. CONCLUSION: Our present study demonstrates that in vivo Rhodamine RCA angiogenic vessel labeling provided a practical approach to effectively guide functional endothelial cell isolation by laser capture microdissection with fluorescent microscopy, resulting in high quality RNA and pure samples of endothelial cells pooled for detecting genomic expression

    Quiver Structure of Heterotic Moduli

    Get PDF
    We analyse the vector bundle moduli arising from generic heterotic compactifications from the point of view of quiver representations. Phenomena such as stability walls, crossing between chambers of supersymmetry, splitting of non-Abelian bundles and dynamic generation of D-terms are succinctly encoded into finite quivers. By studying the Poincar\'e polynomial of the quiver moduli space using the Reineke formula, we can learn about such useful concepts as Donaldson-Thomas invariants, instanton transitions and supersymmetry breaking.Comment: 38 pages, 5 figures, 1 tabl

    Total elbow arthroplasty in rheumatoid arthritis: A population-based study from the Finnish Arthroplasty Register

    Get PDF
    Background and purpose Although total elbow arthroplasty (TEA) is a recognized procedure for the treatment of the painful arthritic elbow, the choice of implant is still obscure. We evaluated the survival of different TEA designs and factors associated with survival using data from a nationwide arthroplasty register

    A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis

    Get PDF
    Background: Many cells communicate through the production of diffusible signaling molecules that accumulate and once a critical concentration has been reached, can activate or repress a number of target genes in a process termed quorum sensing (QS). In the social amoeba Dictyostelium discoideum, QS plays an important role during development. However little is known about its effect on cell migration especially in the growth phase. Methods and Findings: To investigate the role of cell density on cell migration in the growth phase, we use multisite timelapse microscopy and automated cell tracking. This analysis reveals a high heterogeneity within a given cell population, and the necessity to use large data sets to draw reliable conclusions on cell motion. In average, motion is persistent for short periods of time (tƒ5min), but normal diffusive behavior is recovered over longer time periods. The persistence times are positively correlated with the migrated distances. Interestingly, the migrated distance decreases as well with cell density. The adaptation of cell migration to cell density highlights the role of a secreted quorum sensing factor (QSF) on cell migration. Using a simple model describing the balance between the rate of QSF generation and the rate of QSF dilution, we were able to gather all experimental results into a single master curve, showing a sharp cell transition between high and low motile behaviors with increasing QSF. Conclusion: This study unambiguously demonstrates the central role played by QSF on amoeboid motion in the growt

    Electron spin resonance in membrane research: protein–lipid interactions from challenging beginnings to state of the art

    Get PDF
    Conventional electron paramagnetic resonance (EPR) spectra of lipids that are spin-labelled close to the terminal methyl end of the acyl chains are able to resolve the lipids directly contacting the protein from those in the fluid bilayer regions of the membrane. This allows determination of both the stoichiometry of lipid–protein interaction (i.e., number of lipid sites at the protein perimeter) and the selectivity of the protein for different lipid species (i.e., association constants relative to the background lipid). Spin-label EPR data are summarised for 20 or more different transmembrane peptides and proteins, and 7 distinct species of lipids. Lineshape simulations of the two-component conventional spin-label EPR spectra allow estimation of the rate at which protein-associated lipids exchange with those in the bulk fluid regions of the membrane. For lipids that do not display a selectivity for the protein, the intrinsic off-rates for exchange are in the region of 10 MHz: less than 10× slower than the rates of diffusive exchange in fluid lipid membranes. Lipids with an affinity for the protein, relative to the background lipid, have off-rates for leaving the protein that are correspondingly slower. Non-linear EPR, which depends on saturation of the spectrum at high radiation intensities, is optimally sensitive to dynamics on the timescale of spin-lattice relaxation, i.e., the microsecond regime. Both progressive saturation and saturation transfer EPR experiments provide definitive evidence that lipids at the protein interface are exchanging on this timescale. The sensitivity of non-linear EPR to low frequencies of spin exchange also allows the location of spin-labelled membrane protein residues relative to those of spin-labelled lipids, in double-labelling experiments

    The intraductal approach to the breast: raison d'être

    Get PDF
    Opportunities for the detection, prediction, and treatment of breast cancer exist at three biological levels: systemically via the blood, at the whole organ level, and within the individual ductal lobular structures of the breast. This review covers the evaluation of approaches targeted to the ductal lobular units, where breast cancer begins. Studies to date suggest the presence of 5 to 12 independent ductal lobular systems per breast, each harboring complex cellular fluids contributed by local and systemic processes. New techniques for accessing and interrogating these systems offer the potential to gauge the microenvironment of the breast and distill biological risk profiles

    Variation of Maximum Tree Height and Annual Shoot Growth of Smith Fir at Various Elevations in the Sygera Mountains, Southeastern Tibetan Plateau

    Get PDF
    Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range

    Observation and study of baryonic B decays: B -> D(*) p pbar, D(*) p pbar pi, and D(*) p pbar pi pi

    Get PDF
    We present a study of ten B-meson decays to a D(*), a proton-antiproton pair, and a system of up to two pions using BaBar's data set of 455x10^6 BBbar pairs. Four of the modes (B0bar -> D0 p anti-p, B0bar -> D*0 p anti-p, B0bar -> D+ p anti-p pi-, B0bar -> D*+ p anti-p pi-) are studied with improved statistics compared to previous measurements; six of the modes (B- -> D0 p anti-p pi-, B- -> D*0 p anti-p pi-, B0bar -> D0 p anti-p pi- pi+, B0bar -> D*0 p anti-p pi- pi+, B- -> D+ p anti-p pi- pi-, B- -> D*+ p anti-p pi- pi-) are first observations. The branching fractions for 3- and 5-body decays are suppressed compared to 4-body decays. Kinematic distributions for 3-body decays show non-overlapping threshold enhancements in m(p anti-p) and m(D(*)0 p) in the Dalitz plots. For 4-body decays, m(p pi-) mass projections show a narrow peak with mass and full width of (1497.4 +- 3.0 +- 0.9) MeV/c2, and (47 +- 12 +- 4) MeV/c2, respectively, where the first (second) errors are statistical (systematic). For 5-body decays, mass projections are similar to phase space expectations. All results are preliminary.Comment: 28 pages, 90 postscript figures, submitted to LP0

    The N–Terminal Tail of hERG Contains an Amphipathic α–Helix That Regulates Channel Deactivation

    Get PDF
    The cytoplasmic N–terminal domain of the human ether–a–go–go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N–terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N–terminal 135 residues of hERG contains a previously described Per–Arnt–Sim (PAS) domain (residues 26–135) as well as an amphipathic α–helix (residues 13–23) and an initial unstructured segment (residues 2–9). Deletion of residues 2–25, only the unstructured segment (residues 2–9) or replacement of the α–helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α–helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N–terminal α–helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel
    corecore