341 research outputs found

    MicroRNAs and extracellular vesicles in the gut::New host modulators of the microbiome?

    Get PDF
    The gut microbiota plays an integral role in human health and its dysbiosis is associated with many chronic diseases. There are still large gaps in understanding the host and environmental factors that directly regulate the gut microbiota, and few effective strategies exist to modulate the microbiota in therapeutic applications. Recent reports suggest that certain microRNAs (miRNAs) released by mammalian cells can regulate bacterial gene expression to influence the microbiome composition and propose extracellular vesicles as one natural mechanism for miRNA transport in the gut. These new findings interface with a burgeoning body of data showing that miRNAs are present in a stable form in extracellular environments and can mediate cell-to-cell communication in mammals. Here, we review the literature on RNA-mediated modulation of the microbiome to bring cross-disciplinary perspective to this new type of interaction and its potential implications in biology and medicine

    A Guide to Enterotypes across the Human Body: Meta-Analysis of Microbial Community Structures in Human Microbiome Datasets

    Get PDF
    Recent analyses of human-associated bacterial diversity have categorized individuals into ‘enterotypes’ or clusters based on the abundances of key bacterial genera in the gut microbiota. There is a lack of consensus, however, on the analytical basis for enterotypes and on the interpretation of these results. We tested how the following factors influenced the detection of enterotypes: clustering methodology, distance metrics, OTU-picking approaches, sequencing depth, data type (whole genome shotgun (WGS) vs.16S rRNA gene sequence data), and 16S rRNA region. We included 16S rRNA gene sequences from the Human Microbiome Project (HMP) and from 16 additional studies and WGS sequences from the HMP and MetaHIT. In most body sites, we observed smooth abundance gradients of key genera without discrete clustering of samples. Some body habitats displayed bimodal (e.g., gut) or multimodal (e.g., vagina) distributions of sample abundances, but not all clustering methods and workflows accurately highlight such clusters. Because identifying enterotypes in datasets depends not only on the structure of the data but is also sensitive to the methods applied to identifying clustering strength, we recommend that multiple approaches be used and compared when testing for enterotypes

    ABO antigen and secretor statuses are not associated with gut microbiota composition in 1,500 twins

    Get PDF
    Background: Host genetics is one of several factors known to shape human gut microbiome composition, however, the physiological processes underlying the heritability are largely unknown. Inter-individual differences in host factors secreted into the gut lumen may lead to variation in microbiome composition. One such factor is the ABO antigen. This molecule is not only expressed on the surface of red blood cells, but is also secreted from mucosal surfaces in individuals containing an intact FUT2 gene (secretors). Previous studies report differences in microbiome composition across ABO and secretor genotypes. However, due to methodological limitations, the specific bacterial taxa involved remain unknown.Results: Here, we sought to determine the relationship of the microbiota to ABO blood group and secretor status in a large panel of 1503 individuals from a cohort of twins from the United Kingdom. Contrary to previous reports, robust associations between either ABO or secretor phenotypes and gut microbiome composition were not detected. Overall community structure, diversity, and the relative abundances of individual taxa were not significantly associated with ABO or secretor status. Additionally, joint-modeling approaches were unsuccessful in identifying combinations of taxa that were predictive of ABO or secretor status.Conclusions: Despite previous reports, the taxonomic composition of the microbiota does not appear to be strongly associated with ABO or secretor status in 1503 individuals from the United Kingdom. These results highlight the importance of replicating microbiome-associated traits in large, well-powered cohorts to ensure results are robust

    Advancing the Microbiome Research Community

    Get PDF
    The human microbiome has become a recognized factor in promoting and maintaining health. We outline opportunities in interdisciplinary research, analytical rigor, standardization, and policy development for this relatively new and rapidly developing field. Advances in these aspects of the research community may in turn advance our understanding of human microbiome biology. It is now widely recognized that disturbances in our normal microbial populations may be linked to acute infections such as Clostridium difficile and to chronic diseases such as heart disease, cancer, obesity, and autoimmune disorders (Clemente et al., 2012). This has prompted substantial interest in the microbiome from both basic and clinical perspectives. Although our genome is relatively static throughout life, each of our microbial communities changes profoundly from infancy through adulthood, continuing to adapt through ongoing exposures to diet, drugs and environment. Understanding the microbiome and its dynamic nature may be critical for diagnostics and, eventually, interventions based on the microbiome itself. However, several important challenges limit the ability of researchers to enter the microbiome field and/or conduct research most effectively

    Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice

    Get PDF
    SummaryChronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD), not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO). Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening

    Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88

    Get PDF
    BackgroundThe gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88.MethodsTo identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR.ResultsThe gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium.ConclusionThis study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology

    Signatures of early frailty in the gut microbiota

    Get PDF
    Background: Frailty is arguably the biggest problem associated with population ageing, and associates with gut microbiome composition in elderly and care-dependent individuals. Here we characterize frailty associations with the gut microbiota in a younger community dwelling population, to identify targets for intervention to encourage healthy ageing. Method: We analysed 16S rRNA gene sequence data derived from faecal samples obtained from 728 female twins. Frailty was quantified using a frailty index (FI). Mixed effects models were used to identify associations with diversity, operational taxonomic units (OTUs) and taxa. OTU associations were replicated in the Eldermet cohort. Phenotypes were correlated with modules of OTUs collapsed by co-occurrence. Results: Frailty negatively associated with alpha diversity of the gut microbiota. Models considering a number of covariates identified 637 OTUs associated with FI. Twenty-two OTU associations were significant independent of alpha diversity. Species more abundant with frailty included Eubacterium dolichum and Eggerthella lenta. A Faecalibacterium prausnitzii OTU was less abundant in frailer individuals, and retained significance in discordant twin analysis. Sixty OTU associations were replicated in the Eldermet cohort. OTU co-occurrence modules had mutually exclusive associations between frailty and alpha diversity. Conclusions: There was a striking negative association between frailty and gut microbiota diversity, underpinned by specific taxonomic associations. Whether these relationships are causal or consequential is unknown. Nevertheless, they represent targets for diagnostic surveillance, or for intervention studies to improve vitality in ageing

    Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 72 (2006): 3685-3695, doi:10.1128/AEM.72.5.3685-3695.2006.We applied nucleic acids-based molecular methods, combined with estimates of biomass (ATP), pigments and microelectrode measurements of chemical gradients, to map microbial diversity vertically on the mm-scale in a hypersaline microbial mat from Guerrero Negro, Baja California Sur, Mexico. To identify the constituents of the mat, small-subunit ribosomal RNA genes were amplified by PCR from community genomic DNA extracted from layers, cloned and sequenced. Bacteria dominated the mat and displayed unexpected and unprecedented diversity. The majority (1336) of 1586 bacterial 16S rRNA sequences generated were unique, representing 752 species (≥97% rRNA sequence identity) in 42 of the main bacterial phyla, including 15 novel candidate phyla. The diversity of the mat samples differentiated according to the chemical milieu defined by concentrations of O2 and H2S. Chloroflexi formed the majority of the biomass by percentage of bulk rRNA and of clones in rRNA gene libraries. This result contradicts the general belief that Cyanobacteria dominate these communities. Although Cyanobacteria constituted a large fraction of the biomass in the upper few mm (>80% of total rRNA and photosynthetic pigments), Chloroflexi sequences were conspicuous throughout the mat. Filamentous Chloroflexi were identified by fluorescent in-situ hybridization within the polysaccharide sheaths of the prominent cyanobacterium Microcoleus chthonoplastes in addition to free-living in the mat. The biological complexity of the mat far exceeds that observed in other polysaccharide-rich microbial ecosystems, such as human and mouse distal guts, and suggests that positive feedbacks exist between chemical complexity and biological diversity.R. Ley was supported in part by an NRC- NASA Astrobiology Institutes Post Doctoral Associateship, J. Spear by an Agouron Institute postdoctoral fellowship. This work was supported by the NASA Cooperative Agreement with the University of Colorado Center for Astrobiology to N. R. Pace
    corecore