51,300 research outputs found

    The influence of laser hardening on wear in the valve and valve seat contact

    No full text
    In internal combustion engines it is important to manage the wear in the valve and valve seat contact in order to minimise emissions and maximise economy. Traditionally wear in this contact has been controlled by the use of a valve seat insert and the careful selection of materials for both the valve and the insert. More recently, due to the increasing demands for both performance and cost, alternative methods of controlling the wear, and the resulting valve recession, have been sought. Using the heating effect of a laser to induce localised phase transformations, to increase hardness and wear resistance, in materials has been used since the 1970s, however it is only in recent years that it has been able to compete with more established surface treatment techniques, particularly in terms of cost, as new laser hardware has been developed. In this work, a laser has been used to treat the valve seat area of a cast iron cylinder head. In order to optimise the laser parameters for use on the head, preliminary tests were carried out to investigate the fundamental wear characteristics of untreated cast iron and also cast iron with a range of laser treatments. Previous work has identified the predominant wear mechanism in the valve and valve seat contact as impact on valve closure. Two bespoke test machines, one for testing basic specimens and one for testing components, were used to identify the laser parameters most likely to yield acceptable results when applied to a cylinder head to be used in a fired dynamometer test. © 2009 Elsevier B.V. All rights reserved

    The perimeter of large planar Voronoi cells: a double-stranded random walk

    Full text link
    Let p_np\_n be the probability for a planar Poisson-Voronoi cell to have exactly nn sides. We construct the asymptotic expansion of logp_n\log p\_n up to terms that vanish as nn\to\infty. We show that {\it two independent biased random walks} executed by the polar angle determine the trajectory of the cell perimeter. We find the limit distribution of (i) the angle between two successive vertex vectors, and (ii) the one between two successive perimeter segments. We obtain the probability law for the perimeter's long wavelength deviations from circularity. We prove Lewis' law and show that it has coefficient 1/4.Comment: Slightly extended version; journal reference adde

    Selecting Windows

    Get PDF
    Covers double-hung, horizontal sliding, casement, awning, jalousie, top-hinged, and fixed windows. Includes patio doors and skylights

    Elastic precursor of the transformation from glycolipid-nanotube to -vesicle

    Full text link
    By the combination of optical tweezer manipulation and digital video microscopy, the flexural rigidity of single glycolipid "nano" tubes has been measured below the transition temperature at which the lipid tubules are transformed into vesicles. Consequently, we have found a clear reduction of the rigidity obviously before the transition as temperature increasing. Further experiments of infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) have suggested a microscopic change of the tube walls, synchronizing with the precursory softening of the nanotubes.Comment: 9 pages, 6 figure

    Estimating proportions of objects from multispectral scanner data

    Get PDF
    Progress is reported in developing and testing methods of estimating, from multispectral scanner data, proportions of target classes in a scene when there are a significiant number of boundary pixels. Procedures were developed to exploit: (1) prior information concerning the number of object classes normally occurring in a pixel, and (2) spectral information extracted from signals of adjoining pixels. Two algorithms, LIMMIX and nine-point mixtures, are described along with supporting processing techniques. An important by-product of the procedures, in contrast to the previous method, is that they are often appropriate when the number of spectral bands is small. Preliminary tests on LANDSAT data sets, where target classes were (1) lakes and ponds, and (2) agricultural crops were encouraging

    Fast moving of a population of robots through a complex scenario

    Get PDF
    Swarm robotics consists in using a large number of coordinated autonomous robots, or agents, to accomplish one or more tasks, using local and/or global rules. Individual and collective objectives can be designed for each robot of the swarm. Generally, the agents' interactions exhibit a high degree of complexity that makes it impossible to skip nonlinearities in the model. In this paper, is implemented both a collective interaction using a modified Vicsek model where each agent follows a local group velocity and the individual interaction concerning internal and external obstacle avoidance. The proposed strategies are tested for the migration of a unicycle robot swarm in an unknown environment, where the effectiveness and the migration time are analyzed. To this aim, a new optimal control method for nonlinear dynamical systems and cost functions, named Feedback Local Optimality Principle - FLOP, is applied

    QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments

    Get PDF
    QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments
    corecore