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PREFACE

This report describes part of a comprehensive and continuing program of

research in multispectral remote sensing of the environment from aircraft and

satellites. The research is being carried out for NASA's Lyndon B. Johnson

Space Centex, Houston, Texas, by the Environmental Research Institute of Michigan

(formerly the Willow Run Laboratories, a unit of The University of Michigan's

Institute of Science and Technology). The basic objective of this program is to

develop remote sensing as a practical tool for obtaining extensive environmental

information quickly and economically.

In recent times, many new applications of multispectral sensing have come

into being. These include agricultural census-taking, detection of diseased plants,

urban land studies, measurement of water depth, studies of air and water pollution..

and general assessment of land-use patterns. Yet the techniques employed remain

limited by the resolution capability of a multispectral scanner. Techniques

described in this report may help to overcome this limitation. They may produce

more accurate estimates of target classes in a scene when a significant number of

pixels are on boundaries.

To date, our work on estimation of proportions has included: (1) extension

of the signature concept to a mixture of ground materials; (2) development of a

statistical and geometric model for sets and mixtures of signatures; (3) evaluation

of computational methods used to estimate proportions of a mixture by maximum

likelihood; (4) creation of a computational technique for assessing the expected

accuracy of estimation as a function of the signature set; (5) development of

techniques to identify alien objects; (6) testing and evaluating the proportion

estimation algorithms on artificial as well as actual multispectral scanner data;

(7) extension of the basic proportion estimation techniques to exploit prior and

spatial information; and (8) preliminary evaluation of these extensions on

space-gathered multispectral scanner data.

The research covered in this report Was performed under Contract NAS9-14123,

Task IV, and covers the period from 15 May 1974 through 14 March 1975. Dr. Andrew

Potter has been Technical Monitor for NASA, and Dr. A.H. Feivison has been

Task Monitor. The program was directed by R.R. Legault, Vice-President of the

2
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Environmental Research institute of Michigan (ERIM); J.D. Erickson, Project

Director and Read of the ERIM Information Systems and Analysis Department;

P	 T	 dH d f h RTMM I	 1and R.F. Nalepka,rzncival 	 gatar an ea o t e E	 u . Spectra

Analysis Section. The ERTM number for this report is 109600-13--F.

The authors acknowledge the direction provided by Mr. R.R. Legault,

Dr. J.D. Erickson, and Mr. R.F. Nalepka, the technical counsel furnished by

Mr. R.J. Kauth, Dr. R.E. Crane, Dr. W. Richardson, and Dr. W.A. Malila; and

the secretarial services of Mrs. L.A. Parker, Miss G. Sotomayor, and

Miss D. Dickerson.
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SUMMARY

4

The potential applications of remote sensing are numerous. However,

some of these applications are hampered by the limited spatial resolution

of the sensing device. To surmount this difficulty, procedures have

been developed to permit more accurate estimates of proportions of target

classes in a scene when there are a. aignificant number of boundary pixels.

This report covers a fourth phase in the development of proportion

estimation techniques. In the first three phases, a basic solution to

the problem was developed and tested, first on artificial data; and later,

when it became available, on actual space data. Along with the estimation

technique, two ancillary developments were pursued: l) a statistical

test to detect pixels containing alien (unknown) materials, and (2) a

geometrical test on the signature set to determine the suitability of

the associated data set for proportion estimation processing.

Experience with processing actual space data led to two extensions

of the hasic proportion estimation technique. These extensions constitute

the fourth phase reported herein. One of t1aem (LIMMIX) incorporates

prior information in that it is based on the assumption that the number

of object classes that can occur simultaneously in a pixel is very limited.

The other (nine--point mixtures) is also based on this concept; but, in

addition, utilizes spatial information. For a particular pixel, this

spatial information is extracted from the signals of the adjoining pixels.

Along with these two extensions, suitable alien object detection

procedures were devised. Also, a geometrical test of the signature set

was constructed for determining the suitability of the associated data for

LIMMZX or nine-point mixtures processing. In addition, it was found

necessary to develop a clustering procedure for obtaining signatures when

the training fields were narrow. These two procedures have an important

advantage over the oater procedure (MIXMAP). Whereas, for MIXMAP the size

of the signature set can be no larger than the number of spectral channels

plus one; for Ln,24 .X and 9--point mixtures the size of the signature set,

in principle, may be unlimited even when the number of spectral channels

is as low as two.

8
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Preliminary tests of LIMMIX and nine--point mixtures were made on

space data and the results superior to those obtained by conventional

recognition processing or the previous proportion estimation. procedure.

Further investigation is required for solving the problem of setting the

parameters of the procedures. Also, it appears that additional experi:aentation

with multiple signatures for single object classes would be fruitful.

yak, .

a.
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2

INTRODUCTION

In recent years the staff at ERIM has participated in the development

of various techniques for multispectral remote sensing applications, including

agricultural land use measurement, geologic classification and water depth

measurement,

In conventional multispectral recognition, the total area of each

i
	 ground material is measured by identifying the material in each ground

area (pixel) covered by one resolution element of a multispectral scanner.

The total area covered by a ground material is found by adding up the

pixels identified with that material. If almost every pixel in the ground

scene contains just one of the possible materials, this technique provides

adequate estimates of acreages. However, if the pixel contains substantial

amounts of more than one material, the pixel cannot be properly classified.

k

	 For LANDSAT satellite data over agricultural scenes, in which each pixel

covers about 1.1 acres, the number of pixels containing significant portions

of more than one material may approach 30% of the total.

The purpose of the present effort is to obtain improved area estimates

of ground materials in these cases. We attempt to overcome the problem

of boundary pixels in two ways, First, we determine which pixels are

likely to be on a boundary. Then, for these, we estimate the proportion

of materials within.

Since its inception, this effort has consisted of a mix of theoretical

model studies and tests with both simulated data and modest amounts of

ground--truthed real data. Now that real data sets with adequate associated

}	
ground truth are becoming available, we are using these exclusively in

€	 testing and developing mixtures procedures. The past history of the effort

is summarized below to provide a context for this report.
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	 Our work on estimation of proportions was accomplished in several

phases. In the first phase [1121 , a mathematical model was constructed

}
which related the multispectral signatures of a mixture to the signatures

of component materials. 'khis model permitted the maximum likelihood
i

estimate of the proportion vector to be formulated in terms of the observed

data point. The computational aspects of the problem required this

simplification: that all of the covariance matrices of the signatures of

the component materials be taken as equal to their average. Theoretical
s

and empirical res.1L's supported the validity of this assumption. With

this simplification, proportion estimation becomes a quadratic programming

1<

	

	 problem, Several existing computational methods of quadratic programm-ing

were adapted and tested, on simulated scanner data. Results indicated

.	 that this method for proportion estimation was feasible.

The second phase of the program 
[31 

included investigating the problem

k
of detecting alien objects--i.e., objects in the scene not represented

in the signature set. A procedure was devised for rejecting those pixels

which probably contained significant amounts of alien materials. In

I' addition, aircraft scanner data were smoothed over LANDSAT sized resolution

elements to simulate spaceborne scanner data. When proportion estimation

techniques were tested on this data, estimates of crop acreage based on

the estimated proportions were found to be better than estimates obtained

with conventional recognition techniques.

The third phase of the program was devoted largely to reducing

computation time required for the procedures, This was accomplished by

improving the basic algorithm. It takes about 20 msec on an IBM 7094 computer

^o [1] Horwitz, H. M., R.F. Nalepka, P.D. Hyde, and J.P. Morgenstern, 1971,
i Estimating the Proportions of Objects within a Single Resolution

on Remote Sensing of Environment, Report No. 10259-1-X, May 1971
_

	

	 Willow Run Laboratories of the Institute of Science and Technology,
The University of Michigan, Ann Arbor,

[21 Nalepka R.F'., H. M. Horwitz, and P.D. Hyde, 1972, Estimating

w
Proportions of Objects From Multispectral Data, Report No. 31650-73-T
Willow Run Laboratories of the Institute of Science and Technology,
The University of Michigan, Ann Arbor.

[31 Nalepka, R.F., and P.D. Hyde, 1973, Estimating Crop Acreage From
Space-Simulated Multispectral Scanner Data, Report No. 31650-148-T,
Environmental Research Institute of Michigan, Ann Arbor.
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to process LANDSAT signal assuming there are five signatures. In order to

reduce processing time still further, averaging procedures were considered.

Averaging improved the speed of estimation by a factor approximately equal

to the number of points included in the average; but accuracy of estimation,

contrary to theoretical expectations, was unsatisfactory. During this

phase, satellite data with associated ground truth information became

available. Testing of the procedures on this data, as well as results of

other investigators 15,6,71 suggested extensions of the basic proportion

estimation procedure.

Investigation of two extensions constitutes the fourth phase of our

program and covers the period of this report. One extension is based on

the assumption that the number of object classes that can occur simultaneously

in a single pixel is very limited. Although our experimental zomputer

program (called LIMMIX., permits taking this limit as large as 4, experience

shows that two is an effective value. The other extension (called "nine-

point mixtures") incorporates this limiting concept; but, in addition,

utilizes spatial information. For a particular pixel, this spatial

information is extracted from the signals of adjoining pixels.

These two procedures, LIMMIX and nine-point mixtures, have an important

advantage over the original proportion estimation procedure, MI.XMAP. A

necessary requirement for MIXMAP processing is that the size of the

signature set be no larger than the number of spectral channels plus one.

However for LIMMIX and nin-point mixtures, the size of the signature set

may be , in principle, unlimited even when the number of spectral channels

is as low as two.

[5] Malila, W.A., and R.F. Nalepka, 1973, Atmospheric Effects in ERTS--1
Data and Advanced Information Extraction Techniques, Symposium On
Significant Results Obtained From the Earth Resources Technology
Satellite-1, Vol, 1, Goddard Space Flight Center, Greenbelt, MD.

[6] Thomson, F. J., 1973, Crop Species Recognition and Mensuration
in the Sacramento Valley, Symposium on Significant Results Obtained
From the Earth Resources Technology Satellite-1, Vol. 1, Goddard
Spare Flight Center, Greenbelt, Md.

[7] Uchardson, W., 1974, A Study of Some Nine-Element Decision Rules,
Report No. 190100-32-T, Environmental Research Institute of Michigan,
Ann Arbor.
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Preliminary tests of these new procedures were-made on ERTS data

sets. One scene contained a number of lakes and ponds and the objective

of the tests waa to measure the surface water acreage. The other scenes

were agricultural with selected target crops. Results were encouraging.

The next section reviews our basic approach to proportion estimation.

The LIMIX procedure is explairad in Section 4 and results of tests are

presented. Section 5 contains a description of the nine—point mixtures

algorithm. It also contains comparison tests of this procedure with

selected other procedures. More or less burdensome details of all

sections have been relegated to appendices.

{

k
f

I

4

4	 _
3

p

13



FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY

3

APPROACH TO PROPORTION ESTIMATION

A basic application of remote sensing is the determination of the

proportion of a scene covered by a target class (object class of interest).

For example, what proportion of a 5 x 20 mi. segment of Fayette County,

Illinois was covered by wheat on 12 June 1973? The usual approach to

obtaining an estimate of the proportions of target classes in a scene is

based on the assumption that each pixel contains a single object class,

For multispectral data gathered at space altitudes, we know that pixel

size is relatively large compared to field size for a typical agricultural

scene, and that often 30% of the pixels may be boundary pixels (pixels which

contain more than one object class), Reference [3] contains a discussion

of the mechanism by which errors are introduced into the estimate of the

proportions of target classes by processing procedures which do not

account for boundary pixels,

To the best of our knowledge, ERIM was the first to take into account

boundary pixels by associating signatures with mixtures of object. classes[1'2].

Later Detchmendy and Pace [8] published an approach which was quite similar

(see reference [9] for a comparison of the methods. More recently, H. 0. Hartley

[1] Horwitz, H. M., R.F. Nalepka, P.D. Hyde, and J.P. Morgenstern, 1971.
Estimating the Proportions of Objects Within a Single Resolution
Element of a Multispectral Scanner, Seventh International Symposium
on Remote Sensing of Environment, Report No. 1025 91--X, May 1971,
Willow Run Laboratories of the Institute of Science and Technology,
The University of Michigan, Ann Arbor.

[2] Nalepka, R. F., H. M. Horwitz, and Pi.D. Hyde, 1972, Estimating
Proportions of Objects From Multispectral Data, Report No. 31650--73-T
Willow Run Laboratories of the Institute of Science and Technology,
The University of Michigan, Ann Arbor.

13] Nalepka, R. F., andP.D. Hyde, 1973, Estimating Crop Acreage From
Space-Simulated Multispectral Scanner Data, Report No. 31650-148-T,
Environmental Research Institute of Michigan, Ann Arbor.

[8] Detchmendy, D.M., and W. H. face, 1972, A Model for Spectral
Signature Variability for Mixtures, Earth Resources Observation and
Information. Analysis Systems Conference, Tullahoma, Tennessee.

[9] Salvato, Jr., P. 1973, Iterative Techniques to Estimate Signature
Vectors for Mixture Processing of Multispectral Data, Conference
on Machine Processing of Remotely Sensed Data, Purdue University,
Lafayette, Indiana.
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has suggested a modified moment method approach to account for boundary

pixels. Many other current methods for proportion estimation (see, for

example, [10]) take as a model what is termed "mixtures of distributions"

in the statistical literature. This model does not account for boundary

pixels,

This section sketches the basis of ERIM f s approach to proportion

estimation. Included is a discussion of the correlation assumption

implicit in the model for signatures of mixtures of object classes within

a single pixel, Evidence supporting the validity of this assumption for

LANDSAT-size pixels is presented.. The procedure for estimating the

proportions of object classes within a pixel is then explained and the

rationale for making the simplifying assumption of equal covariance

matrices of the signatures is presented. Finally,.possible fruitful

extensions of the basic proportion estimation procedures are discussed.

3.1 MODEL FOR SIGNATURES OF MIXTURES

•

	

	 When the !?OV (Instantaneo;:s Field of Viow) of a multispectral scanner

is large with respect to the structure of the scene being scanned, a single

resolution cell (pixel) may contain more than a single object or material.

A mathematical model has been constructed which relates the signature of

a mixture of materials to the signatures of the component materials.

Suppose the scanner has n spectral channels and that the signature of

object class i, where 1 < i < m, is represented by the n-dimensional Gaussian

distribution with mean A. and covariance matrix M.. Let the proportionz
of object class i be Ai and let A be the vector (A 1, A2,...Ar')t, where the

superscript t denotes transpose, The signature of the mixture with proportion

[10] Odell, P.T.I., J.P. Basu, & W. Coberly, 1974, Concerning Several
Methods for Estimating Crop Acreage Using Remote Sensing Data,
Progress Report .Tuna 1, 1974-August 31, 1974, The University
Of Texas at Dallas.
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vector is taken to be a Gaussian distribution, with mean A, and covariance

matrix M, given by

AX =	 A^Ai AX

M _	 ^'M

where A is the matrix with i th column Ai . These formulas constitute our

model for signatures of mixtures of materials in terms of signatures of

the individual materials.

3.2 ERIN! CORRELATION ASSUMPTION

Examination of the derivation of the model given in Referende [2],

section 2.1, reveals that it is assumed that the correlation is zero

between random variables associated with signals from nonoverlapping small

areas in a pixel. Critics have pointed to this as being a serious flaw.

R. Crane of ERIM suggested an experiment to test the extent of the validity

of the ERTM correlation assumption. The general idea is as follows. From

Aircraft data, select a number of fields containing the same crop type.

Use field center pixels only and assume that the correlation function of

the signals from the pixels depends only on the distance between the

pixels, Estimate the correlation function for selected channels of data,

If we find that the correlation distance is small relative to the size of

a LANDSAT size pixel, then the BRIM model would be validated to some extent

for LANDSAT size pixels. Although the details of the experiment appear

straightforoard, there are two complicating factors; between field

variations and scan angle effects.

In order to minimize the effect of the first factor, an estimate of

the correlation function is made for each field separately and then an

average taken over all fields. In order to reduce the effect of the second

factor, estimates do not utilize pairs of observations along lines of data,

only between lines, Also, a sample mean and variance is used for each

angle in a field. Details of the estimation procedure are contained in

Appendix A,

[21 Nal.epka, R.F., H,M. Horwitz, and P.D. Hyde, 1972, Estimating
Proportions of Objects From Multispectral Data, Report No. 31560--73—T
Willow Run Laboratories of the Institute of Science and Technology,
The University of Michigan, Ann Arbor.
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The correlation assumption of the ERIM mixtures model was tested

accordingly. The data used was from segment 203 of the Corn Blight Watch

Experiment gathered by aircraft at 5000 ft. over Indiana on 13 August, 1973.

Seven large fields were chosen at random for the correlation test, For

each field and each of four channels,* correlations were computed for

distances of up to 47 aircraft pixels or slightly lees than three LANDSAT

satellite pixels. The average correlation per channel for all the fields

was calculated and plotted.

i`
Figure 1 shows that each of these plots quickly falls to near zero.

As separations become large, there are fewer correlation measurements that

-'

	

	 can be made. 'Thus, at large distances, this correlation rest becomes

statistically unreliable, In channel 4 there is clearly some sinusoidal

noise superimposed on the signal.**

Figure 2 shows correlation curves of four individual fields in channel
x

	

	 1, They appear to be random when compared to the average curve of channel

1 in Figure 1. The other channels displayed as much or more randomness.

..

	

	 The resultsof this test, as displayed in Figure 1, support the validity

of the correlation assumption in the ERIM model with respect to LANDSAT

?:	 data. The correlation falls to near zero in a distance that is small

.:;

	

	 with respect to the size of a LANDSAT resolution element. This closely

approximates the models assumption of no correlation between signals from

different locations within a LANDSAT pixel. Figure 2 shows that what

little correlation there is cannot be used as a correction to the mixtures

model because the correlation function seems to be a random variable on

a field by field basis.

*10-channel aircraft data was used for the correlation test. To limit
the test to a reasonable amount of computation tune, only the first
4 channels were us^-3, it was felt that four was enough to make the
correlation test valid, although eventually the longer wavelength

;'	 bands should be checked.
"	 **The peaks are separated by more than 3 aircraft pixels, which rules
?	 out row structure as the reason for the sinusoidal pattern.
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After our experiment had been. performed, we learned that Coberly Ul]

of NASA/3SC had previously conducted a similar investigation. His pixel

size was approximately 12 feet. The details of the experiment varied

from ours in that he used a single large rye field and a slightly different

estimation procedure. Nevertheless, our results and his were very close.

Thus we have additional evidency of the validity of the ERIM correlation

assumption for LANDSAT data.

3.3 ESTIMATION OF PROPORTIONS (MIXMAP PROCEDURE)

The model for a mixture signature can be used to estimate the proportion

vector corresponding to a signal data vector from a multispectral scanner.

Let y denote the n--ddmensional data vector from the'scanner. A maximum

likelihood estimate of the proportion vector [2] is a value of which

minimizes

F(A) = n1M. I
 + <yX- AX, MXl (9 - Aa>

subject to the constraints that

A 1 wad Xi >0 for 1<i <ma	 ^ —

Here I M f denotes the determinant of M, k-
1 
 is its inverse, and u,v denotes

the inner or dot product of the vectors u and v.

In general, minimizing F(X) subject to the given constraints is

quite difficult. Investigations 
(2] 

showed that a good approximation to

the minimal X could be obtained if a simplifying assumption is made. The

assumption is that the average of the covariance matrices of the pure

signatures can be substituted for each Mi . By using the simplifying assumption

1111 Coberly, W.A., 1973, Serial Correlation of Spectral Measurements,
NASA Internal. Memorandum, JSC, Houston.

(2] Nalepka, R.F., H. M. Horwitz, and P.D. Hyde, 1972, Estimating
Proportions of Objects From Multispectral Data, Report No.
31650-73-T, Willow Run Laboratories of the Institute of Science
and Technology, The University of Michigan, Ann Arbor.
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and applying a linear transformation which reduces the common covariance

matrix to the identity, the problem of estimating becomes one of

minimizing a function G(N) of the form

G(l) W lly - AXXll 2

subject to the constraints on A. Now y represents the transformed data

point, and AX the mean of the signature associated with the proportion

vector a after the pure signature means have also been transformed.

The problem of minimizing G(A) subject to the constraints on A can b

viewed geometrically, The set of points A^ AX, where ?L is a proportion

vector, is the convex hull of the A. and is called the signature simplexi
The problem is to find a proportion vector A such that AX is the point

in the signature simplex closest to the data point y.

The optimal X will be unique if the signature simplex is non-degenerate,

i.e,, has positive m - l dimensi?nal volume. This is equivalent to the

(n+l.)--dimensional vectors A 
t
i , 1) being linearly independent. Non-degeneracy

of the signature simplex implies that the number of materials m in the pure

signature set does not exceed the number of spectral channels n by more

than one,

The problem of minimizing G(A) can be identified as a quadratic programming

problem. A program adapting the Theil. & van de Panne method for solving this

type of problem is used to estimate the proportions of object classes within

a pixel, Details may be found in References [2,4,12]. The computer program

[ 2] Nalepka, R.F,, H.M. Horwitz, and P.D. Hyde, 1972, Estimating
Proportions of Objects From Multispectral Data, Report No.
31560--73-T, Willow Run Laboratories of the Institute of Science
and Technology, The University of Michigan, Ann Arbor,

1 41 Horwitz, H.M., P.D. Hyde, and W. Richardson, 1974, Improvements in
Estimating Proportions of Objects From Multispectral Data,
Report No, 190100-25-T, Environmental Research Institute of
Michigan, Ann Arbor.

(12] Kunzi, H.P., W. Krella, and W. Oettli, 1966, Nonlinear Programming,
Blaisdell Publishing Co., Boston.
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is called MIXMAP, and in view of the fact that otherprocedures for estimating

proportions are introduced in sections 4 and 5, we shall refer to this
basic algorithm as the MIXMAP procedure. It requires about 20 msec to

estimate a mixture of 5 materials with 12 channels of data.

3.3.1 DATA AVERAGING

In order to reduce computation time, the MIXMAP program has a data

averaging option C41 . This option provides for averaging a number of data

points and then estimating proportions of the target classes in the region

corresponding to the totality of the data points averaged. This averaging

procedure reduces computation time by a factor approximately equal to the

number of data points averaged. It also has theoretical advantages in that

the estimates of proportions are asympotitically unbiased in an ideal

situation. However, up to now, results of limited tests on LANDSAT data

using data averaging have not been impressive. More testing is necessary

in order to evaluate this procedure more completely.

3. 4 EQUAL COVARIANCE ASSIZIPTION
The substitution of the average covariance matrix for the individual.

'	 covariance matrices of the different object classes has been criticized.
i

This assumption was made to facilitate the computation of proportion

estimates after making simulation runs using typical agricultural signature

sets to test the validity of this substitution. Results indicated that

this approximation was reasonable. But the decisive factor in making this

subst:^tution was the fact that we know of no reasonable numerical

procedure for obtaining the exact maximum likelihood proportion estimate,

i	
nor has anyone recommended any appropriate alternative procedure.

I	 3.5 DETECTION OF ALIEN OBJECTS

Estimating proportions of unresolved objects from a signal y is based

on the assumption that the signal comes from a pixel_ which contains a micture

of materials. These materials are represented by known signatures that
^' g

constitute the pure signature set. If the pixel should contain a material

not represented in the signature set, significant additional error in the

estimate of proportions may result. The amount of this error depends upon

Horwitz, H.M., P.D. Hyde, and W. Richardson, 1974, Improvements in
Estimating Proportions of Objects From Multispectral Data, Report

No. 190100-25-T, Environmental Research Institute of Michigan,	 {
Ann Arbor.

A
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the proportion of these alien materials and the geometric relationship

of their signatures to those in the pure signature set. Those materials

occuring in a scene but not represented In the pure signature set are

referred to as alien friterials or alien objects. Procedures have been

designed to reduce the error resulting from the presence of alien objects.

These procedures take the form of thresholding tests--hence the designation

11alien object threshold."

One might attempt to avoid the alien object problem by obtaining

signatures for all materials present in the scene. This approach is usually

impractical because of the large number of materials present and the

impossibility of obtaining definitive signatures for many of them. An

alternative is to use essentiall a chi-square test as in conventional

recognition processing.

The new mixtures program contains improved procedures for dealing

with alien objects. These procedures can be described most easily in terms

of the pure signature set and signals after a linear transformation has

i
been employed, After this transformation, we assume that the i-th material

in the pure signature set has mean Ai, and its covariance matrix is the

identity. Now given a signal (data point) y from a pixel with unknown

proportions of various materials, the estivate a of the proportion is

obtained as follows, Let Z denote the point in the signature simplex

closest to y. Then Z may be represented in the form

Z = AA

where h is a proportion vector and is taken as the estimate of proportions

in the pixel represented by the signal y. In order to apply an alien object

test, we ask, "What is the probability that we would have observed the signal

with value exceeding y if the true proportion of the pixel was R?" Assuming

Gaussian signature distributions, this amounts to a chi-square test with n

degrees of freedom, where n is the number of spectral channels used. The

`

	

	 level of significants is determined by a value xo, which is the alien

object threshold, If

Il y - Z 11 2 	
Il y 	 Aa( 2> Xo

then the estimate fails the chi-square test; we then say that the pixel

contains significant amounts of alien materials and make no estimate of
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proportions for the pixel, in question. If the estimate passes the test,

we accept it as the estimate of proportions of materials in the pixel

in question.

3.6 SIGNATURE ANALYSIS

The quality of the estimates of proportions one can expect can be

determined to a large extent by examining the pure signature set. In

conventional recognition processing we know that the quality of results

depends upon the distances between pairs of signature means relative to

their spreads (covariances). When these distances are large, good results

can be expected, Not only is this requirement necessary for good proportion

estimates, but a more stringent condition must be satisfied: that no

pure signature be close in a probability sense to any signature of a mixture

of the other materials.

A feature of the MIXlAF program is a simple test called geometric

signature analysis (GEOM). We deal with the transformed signature simplex

with vertices Ai, 1 < i < m, and assume that the common covariance matrix

of all the transformed signatures is the identity. Let r  be the distance

of Ai to the closest point in the hyperplane through the face of the

signature simplex opposite Ai . The face opposite Ai is the convex hull

of all the vertices A, except for Ai . Then ri measures this distance, in

i
standard deviation units of A i , to the mean of a mixture of the other

materials in the signature set. If some r i is small., we would expect data
3

points representing some Ai r s to be confused with data points representing

mixtures of the other materials. Figure 3 illustrates a signature simplex

well—conditioned for proportion estimation. The circles at the vertices

indicate the spread of the distributions at the vertices; these circles

were formed by points which are one standard deviation away from the vertex.

Each vertex is several standard units away from the vertex. Each vertex

is several standard units away from the closest point in the opposite

hyperplane. Figure 4, on the otherhand, shows an example of an ill--

conditioned signature simplex. The pure signature mean Al is less than a

standard deviation away from the closest point in the opposite hyperplane.
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FIGURE 4. ILL-CONDITIONED SIGNATURE SIMPLEX
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3.7 EXTENSIONS OF BASIC PROPORTION ESTIMATION PROCEDURE

In order to improve performance, the basic ERIM proportion estima.ion

procedure (MIXMAP) has been extended in two directions. One of these

extensions results from using prior information about the probable content

of pixels. Normally, a majority of pixels are pure (contain a single

material). When a mixture pixel occurs, it generally contains a small

number of component materials; say 2, 3, or 4. The LIMMIX procedure,

described in Section 4, incorporates this kind of prior information.

The o+:her extension results from utilizing spatial information in

order to restrict further the combinations of object classes which can
occur simu'Ltaneously within a single pixel. The spatial information

employed i,onsists of the signals from adjoining pixels. The resulting

procedure is referred to as nine-point mixtures and is treated in Section

5. It will become clear that nine--point mixtures may be considered an

extension of the LIMMIX concept,

Both the LIMMIX and nine-point mixtures procedures have a very important

advantage over MIXMAP, especially when the number of spectral channels of

information is relatively small as in LANDSAT data. It has been pointed

out in Section 3.3 that a necessary requirement for the suitability of

MD(MAP processing is that the size m of the signature set and the number

n of spectral channels be such that

m c n + 1

Thus, for example, the maximum size of the signature set permissible for

MIXMAP processing of LANDSAT data is S.

The corresponding restriction for LIMMIX and nine--point mixtures
processing is much milder although more complicated. Let L denote the
maximum number of object classes which are assumed to occur simultaneously

in single pixel.. Then a necessary condition for the suitability of

LIMMIX or nine-point mixtures processing may be expressed by the following
two inequalities:



4

UTILIZATION OF PRIOR INFORMATION IN ESTIMATING PROPORTIONS

4

The experience gained at ERIM with estimating proportions of unresolved

is objects has led to a number of modifications of the mixtures algorithm.
^

Many of these modifications are similar in that they place limitations on the

a:
combinations of object classes which are assumed to occur in a single pixel.

Methods for implementing such limitations appear to be of two types. 	 The

I: first type depends on spectral characteristics only, while the second type

depends on both spectral and spatial characteristics.	 The LIMMIX procedure,

described in this section is of the first type; while nine-point mixtures,

presented in Section 5, is of the second type.

Techniques which support the LIMMIX procedure are also described in

this section.	 In addition, results of preliminary tests are presented.

4.1	 LIMMIX PROGRAM

j'. We have found that the number of object classes which occur simultaneously

in a single pixel is very limited. 	 LIMMIX exploits this fact. 	 It assumes

that no pixel contains more than L, L < 4 (L is a parameter), object

classes simultaneously. 	 In order to facilitate testing and evaluation,

the LIMMIX program produces a tapi output for further processing. 	 This j

' tape will now be described.	 Figuze 5 is a record of the tape generated

for each data point assuming the parameter L was taken to be four. 	 The

first four positions give the results for the maximum likelihood single class.

Here	 = I because the pixel is all class C l .	 Then the likelihood value (a 1)

of the data point is stored along with the chi-squared value dl2}.

The next five entries record the best two at a time choice for the data

point.	 The two	 X's are the proportions of the two materials found best and C2

codes the particular pair chosen. 	 a	 is the likelihood of the data point with
2

respect to the signature of this best mixture of two objects classes, and d22f

Y

is the chi-squared value of the data point with respect to the signature of

i th-.s pair.	 Similarly the next six entries on the tape record are the best mixture

of a con..'bi nation of three at a time, and the last seven entries record the best
i

:1#q mixture of a combination of 4 object classes. 	 Best is used in the sense of j

' maximum likelihood.
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FIGURE 5. ONE RECORD OF THE LIMMIX OUTPUT TAPE
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dl2 > X12 , d22 > X22 and d32 > X32

then the pixel is taken to contain alien (unknown) materials.

of LIMNiIX are contained in Appendix B.

LIMKIX uses the MIXHU procedure for determining the best mixture of K

classes at a time. For example, to find the best three at a time mixture, all

subsets of three classes are considered. For each of these subsets, the

best mixture of the three classes is obtained via MIXMAP along with the

likelihood of the mixture. It is that mixture of three classes yielding

maximum likelihood value for the data point that finally appears on the output

tape.

In order to obtain results from the LIMMIX tape, further processing must

occur. The present processing approach is summarized below. Say the parameter

value L is three. Then we choose three threshold values

	

X12	
2) X2 , and X Z.

3
If

2
dl 2
	

X 

then the pixel is all class CV if

dl2 > X
12 and d22 < X22

then the pixel is taken to contain the mixture associated with the pair C2

on the LIMMIX tape. If

d 2 > X 2, d2> X
2 , 

andd 2 < X2	 4	 3

	

1	 l	 2	 2	 3= 3
3

then the pixel is said to contain the mixture associated with the combination
4

C3 on the LIMMIX tape. If

29
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3

4.2 ALIEN2

A computer program, ALIEN2, was developed to operate with LIMMIX to

facilitate experimentation. The current version of LIMMIX, as described above,

puts all of the calculated results on an output tape, without deciding which

k-signatures-at-a-time winner to accept as an overall winner. ALIEN2 then uses

this output tape"as input, and permits a wide range of decision rules (X2

parameters). In effect, LIMMIX is run many times, using only one output tape per

scene. ALIEN2 also tabulates the results for each parameter setting, making it

relatively easy to evaluate the working parameters of LIMMIX.

In a production set-up (i.e., when it is known how to set the X .z 2 parameters)

the two programs will be combined, with no intermediate tape generated. Since

most of the pixels in a scene are pure, it will not always be necessary to calculate

the most likely pair triple, etc., of signatures. For instance, if the chi-square

distance from the most likely signature to the pixel is within the limit set by

the X12 parameter, the algorithm will call this signature the solution, and go

on to the next pixel. If the chi-square distance is greater than x 12 , a search

will be made to find the most likely signature pair whose distance is less than

the X2 2 parameter. This process will continue until the pixel is either

designated as some combination or is checked as alien. Details of ALIEN2 are

in Appendix C.

4.3 GEOMETRICAL SIGNATURE ANALYSIS

A prime factor affecting the performance of LIMMIX is the geometrical

configuration formed by the signatures of the object classes occurring in the

scene. In the previous ERIM mixtures approach implemented by the program

MIXMAP, geometrical signature analysis (program GEOM) is normally performed on

the signature sets to determine its adequacy for MIXMAP processing. GEOM supplies

measures of how close (in a probability sense) each signature mean is to a point

in the hyperplane through the other signature means of the signature simplex.

The larger these distances are, the more non--degenerate is the signature

simplex in a probabilistic sense; and the more suitable is the scene for MIXMAP

processing. 14hen the number of signatures m in the signature set and the

30
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•	 number n of channels of data are such that

m ? n + 1

it follows that at least one of these distances is zero, which means that

the signature simplex is degenerate, and the associated scene is unsuitable

for MIXMAP processing because the maximum likelihood proportions estimate is

then ambiguous. Thus a necessary requirement for the appropriateness of MIXMAP

processing is that

m < n + 1

This requirement can be a severe limitation, especially when the number of

channels of information is relatively small as in LANDSAT data. The corresponding

conditions for LIMMIX processing which limit the values of parameter L may be

stated as follows:

• A necessary condition for the suitability of LIMMIX processing is that

every subset of L + l or less signature means form a nondegenerate simplex.

When L = m, the limitation is L < n + 1. When L < m, the limitation is

L < n

Thus, in theory, we can use LIMMIX processing with L=4 on LANDSAT four-channel

data with any size signature set. Figure 6 illustrates an example of 6 signature

means and 2 channel data. Any subset of 4 or more of these signature means forms a

degenerate simplex, but any subset of 3 or less forms a nondegenerate simplex;

therefore, the data associated with this signature set might be suitable for LIMMIX

processing with parameter value L=2. To obtain a more quantitative

measure of suitability of a signature set for LIMMIX processing, geometrical

signature analysis is performed on each subset of L+1 signature means. The

requirement for suitability is that ea !_,h of the L+1 distances obtained for

each of the (L+l)
	(L+1)1(m-L-1)! subsets be adequately large.

The distances obtained for the geometrical signature analysis for

LIMMIX processing (GEOM2) will now be defined more precisely. To avoid

notational complexity we will assume that a specific subset of L+l signatures

has been chosen and relabeled, if necessary, so that their means are denoted

by Al , A2,...,Ah+l and covariance matrices by M l, M2....,ML+I. Let Hl

denote the hyperplane of dimension L-1 though the means A2 ,..AL+1 and let
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Z be the point in Hi which maximizes the Gaussian density with parameters

r	 A13 Mi . Then di is defined by

dI . <Z-Ai, Mll (2-Ai)>

Figure 7 is an illustration for the case L=2 and n=2. In this example,

dI is approximately 3.

There is an interpretation of the distances d i associated with a
e

simplex that may be helpful. It is understood most easily when the

i °	 covariance matrices are all equal and the usual transformation to the

identity is utilized. 'Then the radius r of the largest inscribed sphere

is given by
l	 L+l i

r	 d.i=l	 1
i

Then r may be taken as a summary measure of the suitability of the simplex.

When covariance matrices are not equal, then r as given by this formula,

'	 al4hough lacking a simple geometric interpretation, appears to have merit.

^`-

	

	 Table 1 displays the output from GEOM2 with respect to a CITARS [131 data

set. This data was gathered 21 August 1973 over Fayette County, Illinois. The

target crops were corn and soybeans. The data was used in tests reported in

Section 5.2. The signature set contained six classes and the limit L was taken

to be two. Thus all possible combinations of three materials required examination.

Since there are 20 of these combinations, there are 20 rows in the table. In

the first row, first column, for example, 1.7 is the closest distance (measured

in standard deviation units of the corn signature) of the mean of the corns signature

to the line through the means of soy and trees. In the second column of the

first row the entry 2.3 is the closest distance (measured in standard deviation

units of the soy signature) of the mean of the soy signature to the line through

*CITARS was a joint research task for Crap Identification Technology Assessment for
Remote Sensing.

'	 [13] Malila, W.A., D.P. Rice, and R.C. Cicone, 1975, Final Report on the Citars 9

Effort by the Environmental Research Institute of Michigan, Report 109600-12-F,
ERIM, Ann Arboz, Michigan.
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TABLE I- DISTANCES CALCULATED BY GEOM2, Fayette Co.,

12 &gust 1973 (Units of Standard Deviation)
i

CORN SOY	 TREE BARE CLOVER WEED

1.7 2.3	 9.3

2.7 2.2 3.6

1.6 2.4 4.4

1.9 2.2 9.9

1.1 2.6 5.0

2.5 9.2 2.9

1.6 3.5 10.8

2.2 1.5 5.2

3.4 1.0 1.8

2.5 5.1 2.4

2.7	 9.1 3.8

3.7	 7.7 2.8
• a

2.9	 9.4 9.8 I

3.3 1.5 4.1

5.9 0.7 3.5

3.4 4.1 14.9

3.4 1.5 2.7

18.9 1.1 1.0
t

3.0 2.7 12.1

1.5 11.5 1.$
f
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the means of corn and trees. Overall, the distances are fairly large, although

the 0.7 for bare soil versus soy and weeds may indicate possible difficulties.

4.3 CLUSTERING PROGRAM

We have found that poor multispectral, data processing results are often

due to signatures which are not representative of ground class distributions.

This in turn may stem from two sources: (1) an insufficient number of data

points to obtain a good estimate, and (2) the incorrect determination of the	 q

number of modes of the distribution.

The large error that may be introduced in this manner often. makes it

difficult to evaluate the efficacy of a classification procedure. Clustering

algorithms offer hope of a solution. These algorithms may be loosely defined as

algorithms which identify data points which are 'alike'. Because this project

has been hampered by the errors arising from this problem, suitable algorithms

were developed.

4.4.1. Description
1

`! 1
To provide versatility, three different algorithms were incorporated into

the program.

Algorithm one uses small, normal distributions to approximate the cumulative

distribution function of the ground classes in a scene. Then it combines these

elements, on the basis of high probability of misclassification, to form signatures.

A description of this follows.

(1) Suppose we have m cells T 1 — fm, with mean Ai , variances (CF i21...ai2n)

1<i<m, where n is number of channels. Let Ki denote the number of samples within

the ith cell. Given a new sample X, calculate the distance of X from each cell

center by

n

d(X,Ai) _	 (Xj-Aij)/oij2 (i=l,...m)

J-1

Find r such that d(X,Ar) = MINi d(X,A.), 7 < i < m

i
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if	 d(X,Ar)< T then X assigned to Tr

if	 d(X A )> 6 then X creates a new cell r
r	 otherwise X is stored.	 ^^

(2) When a new sample is classified to the ith cell, this cell's

parameters are adjusted as follows:

(a) increa7e the number of samples (K i) by one

(b) calculate a Lew mean vector (Ai)

Ai K ^ Xi
i

all xi, 	 cell f

(c) determine new variances by

c'
CF	 " MAX (a.^.(0),Si^I)

IV

j where

K.

z.

where the XQ are classified to the ith cell and. a^j (0) is an initial.

assignment of
2	 2	 2

a	 Only when S 	
aij

(0) do we
2

replace aij(0)

I with S2
t

ij

}

Al

f
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(3) The first sample always creates a new cell. The second sample is

tested and classified by (1) and so on. When all samples have been classified,

the stored samples are forced into the nearest cells according to (1). Each

cluster is then tested against every other cluster for a high probability of

misclassification. Whenever two clusters are found to have a high probability

of misclassification, they are combined with a weighting based on the number of

points in the clusters. This process is iterated until one cluster has more

than a certain percentage of the points, or the largest several clusters have

more than some other percentage of the points. The measure of probability

of misclassification used is:

P=(P(Wl) P (W2)) 1/2 exp(-(A2A1)T((Ml+M2)/2)-1(A2-Al))

W1 and W2 are the two classes involved. The A and M symbols stand for the

mean vectors and covariance matrices of the two clusters.

Algorithm two is almost identical to algorithm one, except that it is a

supervised algorithm, i.e., each data point is labeled (by crop class) and

algorithm one is carried out separately for each class.

Algorithm three is an unsupervised, iterative algorithm which estimates

the means and variances of ground class distributions. It is, in part, similar

to NSPACE, developed by Eigen and Northouse at the University of Wisconsin[141.

Algorithm three proc,=.eds as follows. First, the user inputs his initial guess

of starting means and var i ances, or allows the program to spread starting means

evenly throughout the data space, with a common starting variance. Data points

are then classified to these means using either the standard L1 metric or the

linear Bayes decision rule. The estimates of each mean and variance may be

updated every time a data point is classified to that mean, or after each scan

line or region. The new means and variances are used for further classification.

This process is repeated until the estimates of the means and variances change

very little from iteration to iteration. Further details are 7ontai.ned in

Appendix E.

114] Eigen, D.J., a...'- R.A. Northouse, 1972, N Space--An Unsupervised Clustering
Algorithm Based on Discretized Marginal Distributions, Report No. TR-AI-72-3,
The University of Wisconsin, Milwaukee.
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4.4.2 EFFECTIVENESS

It was found that these algorithms, especially one and two, produce highly

accurate signatures. They have been useful in analyzing variations in the data,

multi-modality, and identifying troublesome 'other' classes. The use of these

algorithms has reduced the error stemming from poor correspondence between

signatures and ground class distributions. This has resulted in better evaluation

of classification schemes.

4.5 PROBLEM OF ESTABLISHING LIMMIX PARAMETERS

The effectiveness of the LIMMIX procedure is dependent on setting the

parameters properly. As an algorithm becomes more sophisticated, it is usually

more difficult to set the parameters, because there are more of them. Such is

the case with LIMMIX. Even when pixels are limited to mixtures of two signatures,

there are three parameters to set. They are x 12 , X22 , and z, the proportion

threshold. There is also the option of renormalizing the remaining proportions

after thresholding. In MIXMAP there were only the T and one X 2 parameter (the

alien object threshold) to set. The only known method for establishing parameters

is to run the algorithm on training data. A wide variety of parameter combinations

are used. The parameter set giving the closest estimate of the training area

ground truth is then used on the test area. It is also difficult to set the

parameters in the nine--point algorithm as explained in Section 5. In Section 4.6,

tests are made on LANDSAT data in order to devise techniques for establishing

parameters.

4.6 PRELIMINARY TESTS

Two data sets were chosen for preliminary testing of the LIMMIX algorithm:

(1) A water data set consisting of 20 generally small lakes and ponds in an

eight square mile area near Lansing, Michigan, and (2) a fourteen section

agricultural data set from Hill County, Montana.

The first data set was chosen for an initial test because water is a

relatively high contrast target. Also, other algorithms had already been tried

on the water data. This provided a basis for comparing the results that LIMMIX

generated.
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The Hill County Data was selected as the agricultural test of LIMMIX.

for two reasons. The area's main crop is wheat, the target crop of the soon to

be implemented LACIE*[151 project, and the area corcains many narrow fields.

The latter insures that there will he numerous ',aixture pixels to exercise the

LIMMIX algorithm.

4.6.1 WATER DETECTION

A water detection project [31 previously done with MIXMAP was

redone using LIMMIX. As before, the data set was divided into water and

non-water regions. The detection rate is defined as the area of water

found in the water region as compared to the area kno-wn from ground truth.

The false alarm rate is the area of water detected in the non-water region

divided by the area of that region. When the detection rate is plotted

against the false alarm rate, we obtained the so--called operating curves

of the algorithm.

Figures 8, 9, and 10 shows the operating curves for MIXMAP

and LIMMIX. These curves represent the best performance of each algorithm,

and will be compared as such.

The JIXMAP graph (Figure 8) is for various rejection probabilities

and thresholds (water only). The thresholding, needed to cut down the

numerous false alarms, gives the best operating curves.

LIMMIX,on the other hand, thresholds all materials. Thresholding

all of the signatures will reduce the detections and false alarms. False

alarms are not as large a problem with LIMMIX due to the recognition portion

of ;he algorithm, The renormalization process, whin., increases the detections,

is therefore the preferred operating mode. The ope.; gLing curves of LI MIX

for vario,-s combinations of X2 and X2 values are presented in Figure 9.

*LACIE is a joint project for a Large Area Crop Inventory Experiment. LACIE
results will contribute to a future operational system for worldwide crop
inventory u^^ing remote sensing and computer technology.

[15] Large Area Crop Inventory Project Plan, November 14 1974, NASA-NOAA-USDA
Report No. LAY01, NASA/JSC, Houston, Texas

[3] Nal,epka, R.F., and P.D. Hyde,'1973, Estimating Crop Acreage From Space-
Simulated Multispectral Scanner Data, Report No. 31650-148-T, ERIM,
Ann Arbor, Michigan.
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A much higher detection rate with a smaller false alarm rate is

evident in the LD1MIX operating curves. The LIMMIX curves show that it

is possible to detect 100% of the water while having only about 0.5% false

alarms. MIXMAP is only able to detect about 93% of the water for the same

rate of false alarms. Figure 10 was included to show that even the

operating curves for LIMMIX without thresholding are the equal of those

for MIXMAP at its best.

4.6.2 ESTIMATING THE PROPORTION OF WHEAT

LIMMIX was tried with wheat as the target crop. The data set selected

was from Hill County, Montana. Its long, narrow fields create many mixture

pixels making recognition difficult (Figure 11). The purpose of the experiment

was not to train parameters to be used on test data, but rather to see if LIMMIX

had the capability of achieving good and consistent results.

The data consisted of several different. LANDSAT passes over Hill County.

On the basis of previous unpublished results generated by NASA/JSC/Earth

Observation Division personnel, the July 16 pass was selected for

processing. Unfortunately, the data tapes were unlabeled, and thus a

considerable amount of effort was required to discover which data set corresponded

most closely to known characteristics of the July 16 data (these characteristics

were mean signal levels of various crops in two channels).

When the ,July 16 data set was identified the conventional process

for identifying field location was carried out, i.e., various features

were identified on a line-printer map of one channel, and then a regression

fit was performed to determine the coordinate transformation from an aerial

photograph to the data set. Signatures for the data set were then obtained.

It would be difficult to get representative signatures from such

 narrow fields by conventional methods since many of them are less than 1

pixel wide. For this reason it was decided to use a clustering algorithm

to obtain the signatures. The equivalent of 5.5 sections was clustered

(farms N-1, 2, 3, 5, 6, 7, 8, 14, 15, 16, 17) and 13 signatures were

obtained. To show that they were indeed different, program EPLOT was run.

i	 The program plotted the mean and covariance matrix for each signature for

3 pairs of channels (2 vs 1, 3 vs 2, 1 vs 4). The plots were examined
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and the signatures were found to be distinct. For the 78 combinations

of signature pairs, none of the covariance plots overlapped on all three

graphs, and only 9 pairs overlapped on two graphs. (Figures 12, 13, 14).

The next task was to correlate the signatures to crop types known to

be in the scene. Recognition processing was run on Hill County for the

13 signatures. The ground truth map and a recognition map were: used to

identify the clustered signatures. Three of the signatures were found

to be wheat. (Numbers 2, 6, 11). LIMMIX, was then used to classify the Hill

County area.

Mixtures of no more than two materials were used in processing Hill

County. That two signatures is the maximum which can be used can be clearly

seen in Section 3.7. The reason for this is perhaps less clear, considering

that MIXMAP is capable of using one more signature than the number of channels

of data. Here is an explanation by example: For 2 channel data and a signature

set of three members, LIMMIX and MIXMAP can both consider mixtures of at most 3

object classes in a single pixel. When the set has four members, MIXMAP

breaks down completely, since it must consider mixtures of four, and there can be

many ambiguities LIMMIX, of course, cannot calculate the best four at a time

either, again because of the ambiguities; but it can find the best one and two

at a time. The 3 at a time is a special case where there is usually just one

ambiguity. Figure 15 shows four signatures in two channels. The data point

(x) could represent a combination of signatures 1, 3, and 4 or 1, 2, and 3, since

k

	

	 the likelihood for either is the same. It is for this ambiguity that three

at a time must be discarded for LIIDSMIX.

The criterion chosen for determining classification accuracy was the

i

	

	 percentage of each material found in a relatively large area as compared to the

true percentage of each material in that area. This was because the normal

i	 method of determining classification accuracy (testing field center pixels) is

j

	

	 inappropriate for the LIMMIX. algorithm, since much of its value lies in its

potential to deal with mixture pixels.

LIMMIX was run. on Hill County data using the 13 signatures for combinations
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Program ALIEN2 was run on the LIMIX tape for a variety of x 12 and

X22 values. The output, in number of pixels detected for each signature

and each pair of Chi.--Squares, was compared with the ground truth to

obtain the detection rate for wheat over the 6 sections.

Due to the small field sizes, it was not possible to define non-wheat

areas and therefore to record false alarms by use of the ALIEN2 program,

and consequently the usual operating curves (i.e., detection rate vs false

alarm rate) are replaced by a graph of detection rate vs. the chi-square

values. Results are presented in Figure 16. Since the graph does cross

100% detection (including false alarms), it was decided to use these

parameter values in two subset areas to test their universality. Small

areas I and 2 are defined in Figure 11. The results for the 2 smaller

areas are presented in Figure 17 and 18. These figures are the

same general shape as Figure 16 but are shifted along the detection rate

axis. Parameter settings of x 12=1 and x 22=17 where the detection rate is

100% for the 6 section area would give detection rates of 92% and 114%

for small areas 1 and 2. Even though we did not use separate test and training

regions, this preliminary experiment indicates that there may be parameters

settings which are approximately correct over subregions.



\]

WILLOW RUN LABORATORIES, THE UNIVERSITY OF
	 GAN



LELI^
FORMERLY WILLOW AUN LA80RATORlES, THE UNIVERSITY OF MICHIGAN

5
UTILIZATION OF SPATIAL INFORMATION IN ESTIMATING PROPORTIONS

Many current multispectral data processing schemes classify pixels on

the basis of their associated signals; the signals from neighboring pixels do not

influence the outcome. But for many applications, schemes which take neighboring

data into account would be expected to perform better than these single element

rules. In addition, such schemes should make the distinction between pure and

mixture pixels better than a single element scheme. 	 } .

Nine element rules are designed to gain these advantages while preserving 	 j

simplicity and speed. Such rules are applied in turn to each pixel of the scene

in the context of its eight immediate neighbors arranged in a 3 x 3 grid aii

diagrammed in Figure 19. These rules assume that when most of these nine pixels

. are assigned the same classification on a preliminary recognition pass, then the

center pixel is unequivocally this material. When there is no clear consensus

amont these nine pixels, the center pixel may then be a mixture. Modest storage i
requirements and the small number of pixels playing a role in each decision make

these rules practical.

After a study of investigations of nine-point rules by Richardson [7] , the

voting rule was selected as the one most likely to detect boundary pixels.

The voting rule is applied after a . preliminary recognition pass has been	 I

made on the nine pixels. The center pixel is assigned the material recognized

most frequently among the nine if N l or more pixels of the nine have been

recognized as that material (N is a parameter of the procedure). If no material

	

y	 gets at least Nl votes, than the center pixel may be either a pure pixel or a

mixture pixel.	 1

The advantage of thevoting rule in proportion estimation is that a large

r
number of pixels contain a single material, and this rule detects most of them.,

For these pixels, the procedure terminates after the vote. For the remainder
i

	s	 of the pixels, the procedure terminates after the vote. For the remainder of

[7] Richardson, W., 1974, A Study of Some Nine-Element Decision Rules,
Report No. 1901:00-32-T, Environmental Research Institute of Michigan,

a.. Ann: Arbor, Michigan.
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the pixels, the voting rule provides contextual information which may be used

to determine which materials are present in a mixture.

5.1 NINE-POINT MIXTURES PROCEDURE

The voting rule was combined with the LIMMIX processing scheme. Three

algorithms were developed for testing. These are described below. Additional.

details are contained in Appendix F.

5.1.1 ALGORITHM 1

A. Make a preliminary pass through the data, classifying each pixel

according to the quadratic Bayes decision rule.

B.. For each pixel, look at it and the adjoining eight pixels, and take a

'vote r as to their identity (pixels may participate in the vote Only if their

associated Chi.-Squared level is less than 71 2 ). If at least . Nl ..of the pixels

agree as to identity, the center pixel is classified as this material.

.

	

	 G. If less than Nl of the pixels agree as to identity, examine the Chi-

Squared level of the center pixel's classification. . If this.Chi--Squar.ed.level

is less than TI., accept the recognition.

D. If the Chi-Squared. level of the.center pixel is greater than tt2, find
the two largest vote winners in the vote of (B). Call the pixel a mixture of
these two materials, i.e., if 4 pixels `voted' for corn, 3 pixels 'voted' for

wheat, and 2 pixels 'voted` for soy, call the center pixel 4/7 corn and 3/7 wheat.

5.1.2. ALGORITHM 2.

This is the same as Algorithm 1 except for step D, which becomes:

D. If the Chi.-Squared level of the center pixel. is greater than xJ2,.find
the best two-at-.a-time mixture via the LINMIX.procedure.

5.1.3 ALGORITHM 3.

This is the same as Algorithm l except for . D, which becomes:.
D. If the Chi-Squared level of the center pixel is greater than 112 1 and

if the totals of the two largest vote winners in the vote of (B) are greater
han or equal to N2, the pixel is assumed :to. be a mixture of thesa. two mater.aals
Find ;their proportions via the LINMIX procedure (The signature set contains only

these two materials). If the totals of at least one of the two largest vote

winners is less than N 2, find the best two-at-a-tide -mixture via: the Ln*= procedure

(all signatures are included in the signature set).
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5.2 TEST RESULTS	 .

In order to determine which of the three algorithms performed the best, and

to determine proper parameter settings for each, these algorithms were tested

on three types of data sets: (I) a water data set from an eight square mile area
i

near Lansing, Michigan, consisting of 20 small lakes and ponds, which ranged in

size from seventy acres to one-third of an acre, averaging about 10 acres

(Section 5.2.1). (2) An agricultural data set, gathered 21 August 1973, with

target crops of corn and soybeans (one of the CITARS data sets), with training 	 3

and test data taken from a 5 x 20 mile area in Fayette County, Illinois (Section

5.2.3). (3) Two.agricultural data sets with wheat as the target crop. The first

was a 14-section. data set from Hill County, Montana with 6 of the sections taken

to be test data (Section 5.2.2). The second was a CITARS data set, gathered

10 June 1973, with training and test data taken from a 5 x 20 mile area in Fayette

County, Illinois (Section 5.2.4).

Preliminary testing was done on the water data set and on the Hill County

	

.',	 data 'set. These preliminary test results showed that the performance of

algorithm one was markedly inferior to that of conventional recognition, and

it was discarded. Algorithms two and three were found to perform. approximately

	

.i	 the same in all cases, although algorithm three is preferable because of shorter

processing:-time. Consequently; only algorithm three was tested further, and

it will be referred to as `the nine-point mixtures algorithm'.

Examination of the four parameters, Nil N2 , r^^, and n ,in algorithms

two and three showed that the best values of both NI and N2 were invariant over
d

the data sets studied. -N l was found to be optimum at eight, and severely.

degraded performance resulted from any other setting. The optimal value of N-

	

^	
2	 a

was found to be four.

The best : .settings.o.f 'n and . rl^ vary from data set. to data.:set, much as the

parameters ya and X2 do in LIMMIX. And as in LMIIX, training is the only method

we now have for selecting parameter settings.
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available for this. data set, a. direct. comparison was possible. Figure 20 shows

a comparison of results for a range parameter settings for e LIMMIX and nine--point

mixtures processing, and the best parameter setting for conventional recognition

processing.

In the nine-point mixtures processing on the water data, it was found that
the results were qui ..te sensitive to changes in 112, while the results were almost .
invariant for any ill greater than 25.

It can be seen from the figure that both LIMMIX and nine-point mixtures
performed .better than conventional, recognition. It is noteworthy- that for

nine-point mixtures when the detection rate was 100%, the false _alarm rate was

only about 0.87.. In addition, nine--point mixtures was quite accurate even on

a lake by Jake basis.

In this test only three signatures were used, and we found that the speed

of processing with nine-point mixtures was approximately that of conven.t.ional,

recognition. As the number of signatures increases, processing time of nine-point

mixtures increases more rapidly than that of conventional recognition. In a

production setup, the processing time of nine-point mixtures would be approximately

2 +	 m!
3	 6(m=2)!

times that of conventional recognition, where m is the number of signatures.
5.2.1.1 _Comparison of Surface Water Detection 'Procedures

For purposes of comparison, the grater data set was processed with.two

other procedures. These procedures were developed at NASA ^ 16 ^ and NASA personnel.

1
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r
developed for detecting all water bodies of 10 acres or more*, and they dial: just

that. Results are given for these discriminant methods as well as for nine-point

mixtures in Table 2,

It is clear that nine-point mixtures is hest for this scene insofar as

the number of lakes detected. and % total. water detected is concerned. However,

processing time for this procedure is much slower than for the .other two, by

abou^ two orders of magnitude.

Signatures for water and non-water were obtained from a training area which

comprised approximately 5% of . the scene. These signatures are shown in Figure 21.

In this figure, the universal discriminant obtained from the reference is shown

in lane 1. The tailored discriminant, shown as line 2, was drawn by eye.

The universal discriminant requires no signature extraction or experimenta-

tion, and is extremely rapid. This procedure was found to detect lakes of greater

than ten acres, however it functioned erratically on lakes of significantly

smaller size. Overall accuracy was the lowest of the three in area determination.

It should also be mentioned that it found two lakes where there was actually one

narrow lake.

The tailored discriminant requires signature extraction and some experimeuta

tion to determine the linear discriminant function.. The speed of classification

is equal to that of the universal discriminant. Performance, however, was better

in as much as lakes of ten acres or more were again reliably found, but the

determination of lake size was more accurate. This procedure correctly identified

a narrow lake as just one lake instead of two.

Nine-point mixtures requires both signature extraction and experimentation

to establish operating parameters. This requires more effort than the tailored

di_scri.misiant. Nine-point mixtures detected all but one lake with an area of one-

half acre or more while detecting a lake whose area was less than one-half acre.

This procedure can be expected to reliably. detect lakes.of on.e acre or more. Area

determination accuracy is also very high -- the average error on each lake was less

than one acre, with almost zero total error. The main disadvantage is processing

time,
*Report 3SC 08449, table 8, page 7-4, documents the fact that the procedure was
developed according to the criteria required for the National Program for the

: Inspection of.Dams. These requirements were that the procedure must accurately:
detect the existance of lakes of 10 acres or more. Further, the procedure was
not required to estimate sizes of water b, :i.es.

j,
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TABLE .	2 . i

COMPARISON OF WATER ]DETECTION PROCEDURES

NO. OF LAKES EQUIVALENT NO
i
3

DETECTED OF WATER
PROCEDURE	 (OUT OF TWENTY) PIXELS FOUND % I)ETECTTON

Universal Discriminant 13 162 67.1%

Tailored Discriminant 12 193 79.9%
j	 Nine--Point Mixtures. 19 245 101.4%

j
r
i

a

i

9

:
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For each of the above procedures there were an insignificant number of

false alarms..

Figures 22, 23, and 24 are classification maps for the three procedures.

The tailored discriminant (Figure 23) fills out the lake areas more completely

than the universal discriminant (Figure 22)..even though the latter detected one

more lake. The classification trap for nine--point mixtures (Figure 24) shows how

this procedure not only detects interior water pixels (denoted by the symbol

M), but also delineates boundary, or mixture, pixels (denoted by the symbol *).

5.2.2 PRELIMINARY WHEAT DETECTION TEST

The nine-point mixtures algorithm was.applied to the Hill county data set,

where results of conventional recognition and LIMMI.X processing were available for

comparison. Table 3 shows results of the three processing procedures on this

data. The conventional recognition shown is the quadratic rule with a rejection

threshold of -. LIMMIY is shown employing parameter values of X2=5,. X2^
and proportion threshold T= .4 (proportions less thane are set to zero, and the

remaining proportions renormalized so that they sum to one). The nine-point

mixtures rule is shown using parameter values of N1=8, N2=4, i12=30, and 112=5.

Table 3 compares the detection of wheat for the three procedures. Thirteen

signatures Mere employed. Three of these represented wheat. Detection rates

were obtak.^ed as follows. All the pixels in the test area were designated, using

ground truth information, as wheat or non-wheat. The detection rate is defined

to be the equivalent percentage of wheat pixels found by the procedure to be

wheat. The false alarm rate -'is defined to be the equivalent percentage of

non-wheat pixels .found by the procedure to be wheat.

'The results in Table 3 were obtained by the use of classification maps and

overlays; as such they should be treated, as close estimates, rather than exact

figures. For purposes of comparison,.. we note that fJ_eld center recognition Is 	 V.. ^
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5.2.3 ESTIMATING PROPORTIONS OF CORN AND SOYBEANS

Tests were conducted on Fayette county data employing a set of signatures

derived during the post--project analysis of the`CITARS project results. These

signatures were obtained after breaking the data set into three parts: training

(20 quarter sections), pilot (10 sections), and test (10 sections). These- three.

parts contain 2880 pixels, 5630 pixels, and 5529 pixels, respectively. The

r other' signatures were those previously obtained from the training quarter

sections, while the signatures for corn and s07beans were obtained from the

pilot sections.

This was done because the corn and soybean fields in the training area

had been found to be unrepresentative of the corn and soybean fields in the

test data.

The parameters of the nine-point mixtures rule were then established on

the training quarter-sections, using accuracy of area determination as the

criterion for selecting the best parameters. The results of the effort to establish

parameters are shown in Table 4.

Nine-point mixtures was then used on the test sections with parameter values

n2-20, ill=5. Results were poor. Examination of field center pixels showed a

problem with misclassified 'other' pixels. Investigation showed that the poor

results were due principally to the fact that there uras no rejection threshold

used for mixtures. To correct this, a third chi--squared parameter, n3, was added

to the algorithm which sets a rejection threshold on mixtures, as fl2 does in
LIMMIX. Mixtures which are reje..ted are called 'other'. With this addition, the

parameters were again established on the training quarter--sections. The results

obtained are shown in Table 5

The best settings of the parameters . (n2=20, Ti2=5 , n3=5 ) were employed on, thf,

test sections but again the results were poor.

The parameters Caere then established on'the larger set consisting of bath

the pilot sections and training quarter-sections. Results are shown in Table.-.6.

A selection of fo*sr parameter settings including the ?test settings of the

•	 parameters (TI 2=20, r1 2.=2..5, n 3=2.5) were then used on the test sections.
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TABLE 5.

RESULTS OF ESTABLISHING NINE-POINT MIXTURES PARAMETERS

(Training Quarter--Sections Only)

Parameter Settings Proportion Estimation {%)

T32 n2 U2 Cerra	 Soybeans

20 5 2.5 18.12	 43.83

20 5 5 22.9.6	 45.47

20 2.5 2.5 18.76	 40.47

20 2.5 5 26.46	 43.35

'	 Ground Truth 23.53	 45.31

i
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TABLE 6

RESULTS OF ESTABLISHING NINE-POINT MIXTURE PARAMETERS

(Training Quarter-Sections Plus Pilot Sections)

Parameter Settings
	

Detection M

n 2 n2 n3 Corn Soybeans

20 5 2.5 21.75 38.13

20 5 5 18.30 28.75

20 2.5 2.5 21.50 34.88

20 2.5 5 28.99 36.85

Ground Truth 24.54 33.63
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The "best" parameters (n^=20, n2=2.5, n =2.5) yielded excellent results

when used on the test sections as shown in Table 7.

Why then were results so poor when parameters were established only on the	 j

training quarter-sections? We know based on detailed examinations, that the corn

and soybeans fields in the training region are not adequately representative of

the corn and soybean fields in the test region. This is why the corn and soybean

signatures were obtained from the training quarter-sections plus pilot sections,

rather than from the training sections alone. We believe that this is the

explanation for the poor results obtained when the parameters were established on

the training quarter--sections alone.

An analysis of the error was made in order to establish the consistency of

nine-point mixtures as an estimator of crop proportions. To do this the RMS

error between nine--point mixtures crop proportion estimate and ground truth

proportions was computed for each of the 10 test sections (averaging 553 pixels

each). The RMS error between the true percentage corn and the estimated percentage

corn over the ten test sections was 3.53(%). ror soybeans the corresponding

figure was 4.33(%).

5.2.4 ESTIMATING PROPORTIONS OF WHEAT

Another test of nine--point mixtures on a data set with a target crop of wheat

was made using the CITARS data set of 10 June 1973 on a 5 x 20 mile area of

Fayette. County, Illinois. 'There were twenty training quarter sections containing

a total of 2880 pixels and nineteen test sections containing a total of 10,223 pixels. 	 j

Because of time limitations, it was decided that we should at first limit
9

ourselves to the two best values of n , n2, and n , as indicated by the corn, and

soybean test. When using these two parameter settings, an attempt to establish-	
a

parameter settings on the training data was made. The results of this test are

given in Table 8. The parameter setting of 11 20, n2 2..5, n3=2.5 gives the closer

estimate.

Examination of these results from the training area-showed that most of the

errors came from wheat recognitions in hay and summer fallow fields. As the n
2

level for accepting a pixel into the vote was rather large, it appeared that	 j

•	 decreasing n2 should help the results. Parameter settings -with -n -14 and n2-7 were
1	 I	 1

then tried on training data, and the results of this test are given in Table 9.

i
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20	 5 2.5 13.56 33.58

20	 5 5 20.12 37.30

20	 2.5 2.5 15.85 31.06

20	 2.5 5 24.56 33.63 ;a

Ground Truth 14.16 31.41	 ^

*Note; The parameter

j-s

set established by training
gives the best results an the test sections.
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Parameter Settings	 Proportion Estimate {/)

TITI 71 TMAT

20 2.5 5.0 23.3

20. 2.5 2.5 18.1

Ground Truth 13.1

_
1

I

l

a
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	 These parameter settings and results were then graphed. Extrapolation from

this graph indicated that the correct parameter settings would be 11 1=6, 112=2,5,
r12-2.5. The results for this test is shown in Table 10. The results on the
3
test data were then computed for each of the parameter settings previously tried.

These results are given in Table 11. A graph of the training and test results

plotted against the parameters is shown in Figure 25.

5.3 DISCUSSION

Analysis of the results obtained by nine-point mixtures reveals that:

(l) Nine-point mixtures has performed significantly better than conventional

recognition as a crop proportion estimator for each data set examined. (2) Nine-

point mixtures has shown itself capable of extremely accurate crop proportion

estimation on one agricultural data set (Section 5.2.3). (3) On the other

agricultural data set (Section 5.2.4), while nine-point mixtures performed better

than conventional recognition, it is clear that better methods of setting the

parameters should be investigated. (4) Nine-point mixtures has shown itself

capable of extremely accurate proportion estimation of water, even with very

small (.3 acre) lakes. (5) Nine-point mixtures appear to be consistent in this

respect: it retains much of its accuracy even over small areas, as indicated by

both the corn and soybeam test, and the water test. (6) Nine-point mixtures

is comparable to conventional recognition in processing time for a reasonable
9

number of signatures.

j
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ABLE 10

PROPORTION ESTUTATTNG ON TRAINING DATA

(eONTIHM )

Parameter Settings	 Proportion, Estimate(%)

T1	 ^ z	 WHAT.	
{

6	 2.5	 2.5 	 1

I
Ground. Truth	 13.1

TABLE 1.1.

PROPORTION ESTIMATION ON TEST DATA

Parameter Settings	 Proportion Estimate (%)

2	 2	 2
12	 X13	 WHEAT

20	 2.5	 5.0	 32.7	 -
i

20	 2.5	 2.`5	 26 .6

14	 2.5	 50	 2903

14	 2.3.	 2.5	 22.1

7	 2.5	 5.0	 23.1

7	 2.5	 2.5	 12.E

' fi	 2.5	 .2.5	 11.4

Ground Troth	 9.0

{ 78	 9 -
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b
CONCLUSIONS AND RECOMMENDATIONS

Results of tests pe;formed on LANDSAT data sets show that the LDD= and

nine-point mixtures processing schemes offer significant improvement over

both conventional recognition and MIXMAP processing. The reason for this

superior performance seem to stem from the incorporation of prior information

about mixture pixels and their spatial arrangement. The reduced number of

spectral channels required for these procedures offers a further advantage over

MIX.MAP. For these reasons we believe that further testing of these newer

concepts is warranted. In addition., reevaluation of data averaging should be

considered.

The attainment of superior performance via LIMMIX and nine-point mixtures

is possible only when the parameters of these procedures are correctly set;

thus the problem of setting these parameters warrants further study. This is

especially true for nine-point mixtures because of it's greater number of

parameters.

Analysis of signatures shows they are often clearly meil^imfldal, and the

employment of unimodal signatures may degrade performance severely. This

indicates that the effect of the utilization of several unimodal signature to

represent a single object class be investigated in conjunction with these newer

...,— -a-d __	 glen nn^041%4 1 i i-Ir of Ar%4"v f-M c T&40 MTVVAP
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i i 	 APPENDIX A

ESTIMATION OF CORRELATION FUNCTION

}
The. computation of the estimate of the . correlation function for a

single field and single element channels is as follows. For simplicity, we

assume that the field center pixels form a rectangular grid with line numbers

Z,L1<L<L2 , L
2
-Li+l=N

L
* point numbers P,P^<P<P 2 , Np P2-^P1-,-1.. The signal.

at coordinates (L,P) is denoted by X(L,P). The sample mean along point P is

denoted by XP where

LZ

	

1	 X(L,P)XP -- 
NL

The sample variance along point P is denoted by sP and is computed by

L2 	 2	 _

	

2 1	 _	 2__ I	 2	 2

	

sP - N	 E	 [X(L,P)	 XP	 N	 X (L,P)
_ (Xp.)	

jL 
L-L,	

L
L--L,



r
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t

W

9

F
c

i
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then we have

P2	 L2-j

R (j ) .= N (Nl_j)	
y(L,P )• y(L+j^P)

P L	 P=PI L=L1

The transformation from K to Y may be thought of as correcting for a simultaneous

multiplicative and additive scan angle effect.

Now let us assume that there are K fields and that the estimated correlation

function for the kth field is denoted by:

G	 Rk ^j )	 l<k<K, 0.j<N
L, k -1

Let the average of the correlation functions over the K fields be denoted by

nu
R(j)

where j ranges over	 d.5j<Nmin 1
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APPENDIX B

DESCRIPTION OF LIMMIX

The following is a step by step explanation of the LIMMIX algorithm. The

step numbers correspond to the accompanying flowchart. (Figure 26). Also

included is a list of program variables.

EXPLANATION OF ALGORITHM

1. The mean (A) and covariance matrix (M) for each signature is entered

and stored. A is an. n x 1 matrix and M is n x n. (n Lumber of channels) .

2. To save time, four frequently called terms are precomputed and stored.

A. M z

The inverse of the average of the covariance matrix for all

combinations of up to L at a-time are calculated. The subscript c

designates the combination number. For combinations of one at a

	

time coes from 1 to 	 )	 combirfa.tioa.g	 (m =Hamper of signatures. The

numbers for 2 at a time begin at m+l and are in this order: signatures

1 and 2, l and 3,,.., 1 + m, 2 and 3, 2 and 4,...,etc.

B. M A.
c i

Each of the previously stored matrices are multiplied by each

of the A (mean) vectors which correspond to the component matrices

used to compute each M matrix.c

Example: M2,5 is multiplied by A 2 and the result stored

	

_i	 f

'Then M	 is multiplied by X 1 .5 and the result. sto3r,ed
2,5.

Each of these products result in are n x 1 matrix.

C. r^"i	 1

First, the r (gamma) matrix is calculated Here is an ex ample

where the matrix Combination, containing Covariances of 5-ignature.s. .Me,

l
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-1
two, and four are used. M will stand for

	

^A I 1 At- MA 	 4KA4

-	 2
	

At--Mk	 A'_:^

I

	

2 2	 2 4

AtMA	 A'MA	 A iA
4 1	 4 2	 4: 4

r is an m x m matrix, independent of the number of,channels. (Each

At 1P is lxl matrix, or just a number).

r'^, the augmented matrix, is the r matrix with an extra row

and column of ones, and a zero in the.m+l, m+l position.

Example:

r11 r 1 r13	 l

r	 r21	 r22	
r23	 1

r31.	 r32	 r33	 1

1	 l	 l	 0

The inverse of the above matrix is stored for all the combinations.

i

D. lnIR I

As.a biproduot of taking the inverse of the average covariance

matrix, the determinant is computed. The natural log of these

determinants are stored for use Later in the likelihood and chi-

squared calculations.

3-6. The likelihood, chi-squared, and proportion vector . storage bins are

given initial values. The data vector (n x 1) from the first pixel is

multiplied by the.. transpose of the first MS vector (l x a) ' to yield g.
For the .first 'm calculations ., .the*-e. is One >A per M and g is just a number'..
When MA.t.s;are called from storage in sequences where two or more ATe are

multiplied by a common M, g is .a vector whose length is the number of

components of M.
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7. The g vector is augmented and then multiplied by the T' 	 matrix that used

the same M matrix. The product gives the proportion vector of the com-c
poneat signatures and A. (Which serves top- role of a Lagrange multiplier).

8-10, If any one of the proportiords is negative, that signature set is rejected
as a solution and the :next MOs and T*-1 matrices are used to find a new a

vector. When an all positive proportioii vector is found, the likelihood
and chi-squared values are calculated.

11-14. If this calculated likelihood is greater than (..e., less likely) the
stored value (ao), the signature set is rejected as a soltitioh. However,
if a  > a, the new values for the likelihood., chi -square, and proportion
vector are substituted into temporary storage. When the level is complete

(i.e., when all the one at a time or two at a time etc. combinations have

been looked at) ao , xp and the ao 1 s are stored to be output on tape later.
If the level has not been completed, the matrices for the next combination
of signatures are brought from storage and the calculations starting from

step 6, are done again.

15-17. When a level has been completed, the values that will be calculated in
the next level are initialized with those calculated from the previous

level. This is not really a step, since the winning values from the

previous level are already in temporary storage (step 13).

Step 16 is included to clarify the fact that the values are not

initialized to the same numbers in the succeeding levels as they were

in the first (step 5). This method of initialization prevents solutions

at the i + 1 level being less likely than the solutions at the i level.
e.g., the most likely two at a time may be a recognition with the second
proportion equal to zero.

When all four (or less) levels are complete, the likelihood, chi-square,

and proportion vector for each level are put on tape, and the algorithm

proceeds to the next pixel.

j
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i
Start

1

A,.M A Signature mean vector	 h
M Signature covariance matrix
X Data vector

2 a Likelihood

Preeompute X2 Chi-square
and Store X Proportion vector

e Combination number (subscript)
N! -1 P*-1,
c	 '

1niMI, M lAi

3
17

15
14

Pick Data
Four:
f	 2,	 Yes

All
4(or less)	 Store

point X a	 s, X" so 0 Levels Com-	 2
aXo ,X° Sfs plete ? °v

ro.
3	 a

4 16

1

Choose First Initialize a, .12
-1.-

M A. & 2	 .	 ^.	 °X, ,,\	 s with No Level	 Yes
i o' o Complete

previously ?
Stored Values i

13
ao _. co

ao -- a
Xa = OD X2 r X2

Xos=0
No's — X+s

6 5
Yes

Choose Next 11

gl ._ «clA, s> M- iDi gaF*-1 NO	 a < aO

1 in Sequence

No 10 .

r=	 *-I}
8	 .. All

's

X's Positive Yes a = <M-lX,	 <Xc,g> " 4 + In
!	 lrl	 J	 1	 I X2 =a-ln

FIGURE 26. LIU= FLOW CHART'
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i

LIMMIX. is a module of POINT.	 A program whose main function is to transfer

data.po.ints to its modules in accordance with . control . data.	 This.contro:.. data

specifies the ground area to be processed. `	The format of POINT. is such that

modules may be called at several different stages of the data processing

procedure.	 At.srep one of POINT., before any data has. been read in, LIMRIX 4.

control variables are read, initialization is completed, and pre-computations are

done. ..In..step .two, the number:of output channels. is . set to 22.	 This.is.after

the POINT. control variables have been read but before any processing is done.

Lastly, POINT. calls the processing part of LIMMIX.	 (Flowchart Step 3 to the end:)

for each data point ' until the area is complete.. 	 The. next page.contaans.a list

of the: LIMHIX control variables.

~ CALLING SEQUENCE:	 $COMPILE MAD, EXECUTE
POINT. (L]^iMLK. )

_
E?m

BINARY
LI MIX,BINARY DECK

. $ DATA
READ AND PRINT DATA CARD(S) FOR LIMMTX.*

} -	 SIGNATURES
INBIN,OUTHIN,FxLE,OFILE,...
NSA'S (OR.POLYGON COORDINATESI)

POLYGON coordinates have been run with LIMMIX. on the BRIM ER.TS project
with no apparent errors.

i
'i
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• LIMMIX VARIABLES

IT .IS . E.ESET TO
.: DEFAULT AFTER

VARIABLE DEFAULT WODEI.=SSTART$^ EXPLANATION

NSIG (2) None No	 Number of signatures (each with NV
!

A
channels - subsets of channels not
allowed for signatures)

ND None No	 Maximum number of channels on. the
data tape.

NV None No	 Number of channels on the data tape
that. will be used (NV = NCIIAN) .

ICODE 1,2,3,4,... No	 Which channels on the data tape
Exa;.._ " -:;	 ICODE(J) - 1, 2,4

ItANK (2) 4 Yes	 Maximum number of signatures con-
s idered 3.31 the identification of
each pixel.	 RANK. must be 54.

(RANK ; : NCOMP (ALIEN 2) )

SCALE.
y Yes.	 Scale factor for X2 (.chi-squared)

j

MODE 0 Yes	 = 0 means read the first NSIG signatures
:. = 1 means search tape for NSIG signatures

whose names are read, one to a card, by
2C6* at the time of the search.

_ 2 means search tape but use the previous
name list.

-1 means return without reading 3iL.;a

signatures_.	 Do not use this option
in LINMAP or CLASFY.

CC 0 Yes	 =-1 print nothing..
0 print the i.d. card only
a character.	 Print the i.d. card, mean
vector and: covariance matrix with.CC .as:...
the carriage control character for the i.d.

2) The values that are set for NSIG, NV,. and RANK are interrelated. 	 Fora given NSIG and WV, there is a,maxi.mum setting for RANK.	 The following table
shows the relationship.

RANK_< NV+l	 when RANK = NsIG 3.

and,

IRAN < NV .	 when RANK ^ Idfi7G

3
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APPENDIX C

DESCRIPTION OF ALIEN 2

This program, written in the programming language .MAD as implemented
3 on an IBM 7094 computer, performs the analysis algorithm for LD MIX.

This . program accepts the..output.of LIMMIX.`;.and produces the following

output:

1.	 How many pixels Caere classified by recognition, mixtures with

2 signatures, mixtures with.3 signatures, mixtures with 4

; k signatures, and the number unclassified.

2.	 The amount of each..materi:al classified by each of the above

:.
a

methods.

3.	 The amount of each material classified by each of the above

methods, but as a fraction of the total number of pixels,
l

4.	 The amount of each material classified by each of the above methods,

but as a fraction: of the total.. number of classified pixels.
i.	 The amount of each material from recognition, recognition plus

2 signature mixtures, recognition plus 2 and 3 signature mixtures,'

,. and the. total.amount of each material.

6.	 The mean square error (in pixels) of the subject material, both

for each area and the sum of all of,the areas.

7.	 The percent ;mean square error of the subject material, both

for each area, and the sum of all the areas.

Portions .of this output can be suppressed, }
_ The program is a module of POINT, a program which provides_.data

points to it's modules in accordance with control data (NSA cards) and in

a rigid .format which' includes calls to all of the iu6du7:es before any control
data is read, - after control data is read," before each line of data is read,
and after.each,ar.ea has:been processed.:	 For each .data: point, a call to

- the internal function of each module is made; for pr"ocessing of data.

89
i

.: _.



ERIU!
FORMERLY WILLOW RUN LASORATORIES..THE UNIVERSt" OF.

The program ALIEN2 is organized as follows:

STEP(1) - (This step is .called before POINT T S control data is read)

setup and initialization, obtaiii control variables.
STEP (2) (POINT. calls this after initial control data is read) ,

zero sums of number of.pixels;of each class if starting

new region,

STEP (5) - (POINT. calls this after each area is processed) if this

wa.sn T t the last area to be combined into one region,
return to POINT. Otherwise compute and print out statistics.

Internal Functio,.i PSUM - (POINT. calls this for each data point). It

is here that the decision as-to whether a point is one material,

two materials or more is made, and here the thresholding

and./or .renormali,zation is done, and. finally the pixel is

added to the running sum of the number of pixels of each

material.

The variables d(1) through J(4), (in the THROUGH loops, lines 106-109)

correspond to the variables-X j ,- XV X;, X4a of LIMMTX, which are used as
thresholds (in lines 114 and 115) to decide whether the pixel is one

material, two or alien. If the pixel is alien, the alien COUNT is

increased (in line 117), otherwise, the correct N-materials at a time count

is incremented in line 119:

Then, in lines 121 to 129 $ the combination of materials is decoded,

and the proportions of these materials are stored in the OUT array.

At this point., either thresholding, or thresholding with renormalization

is done to the proportions (in lines 136 to 138 or 139 to 150, respectively),
and finally .these proportions . are . added to.-the SUM. array, which holds the
accumulated totals for each material... Optionally, a likelihood weighting

can be used as . a decision rule, and this is done in lines 151-162. See

Figure 27 for AhIEN2 flowchart.

The arrays COUNT and SUM are induced by the variable 2, which is
incremented each time the data point bas been processed by a set of
parameters, and thus the proportion of each material (in SUN) and the count

i	 of how many pixels were pure, or of two materials, etc.,, (in COUNT) is kept
1

separate for each parameter setting. Further, the array 5UM is induced'
1

f VU

i

i

i
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3

3

I

by N, the number of materials in that pixel 	 so that the amount of pure

material, two material mixtures, etc., is kept separate for each

parameter 'setting ::and each material. j

Control variables for this program are as follows.

POSSIBLE

VARIABLE VALUES DEFAULT FUNCTION y

THRESH SON$ off Men TRESH;$ON$, any proportion less.

4 than TAU* is set to. zero .^
;I NORMAL $ON$ off When NORMAL=$ON$, any proportion less

s
them. TAU* is set to zero..	 Then all

remaining proportions are re-normalized
a

to sum to one.

' LIKELY $ON$ off When LIKELY=$ON$, then the likelihood 7
j

decision rule is used, i.e.., 2 l, Viz,

Z3  , are rweighted', and the minimum. i

is decided upon (see description of

LI MIK output tape). 	 When LIKELY=$ON$, P*

must be specified.. 	 When .LIKELY is ^	 3

not $ON$. the, Chi squared.decision rule

is used.

HAFOUT $ON$ off When HAPOUT-$ON$, output items (1)-(4)

are not calculated. ,a

ERROUT ON$ off When ERROR=$ON$,..out . ut : teas	 5	 &	 6

'. are calculated.	 14hen ERROR $ON$, TRUTH* , CHAN*

must be specified.

NCObLP 1-4	
..

1
"

A maximum of NCOMP^-signatures per ^5	 ^

mixtures was _used". r

t Number of signatures.

r TAU any 0 Threshblding value, see NOMIAL*

*See Specification of Variable
1

t
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VARIABLE

START(1-4)

STP(1-4)

JEND(1-4)

CHAN

POSSIBLE
VALUES

INTEGER

INTEGER

INTEGER

1-9

DEFAULT

1

1

1

1

î*	 FORYERL. Wit-LOW RUN 6A9oRATOPIE3 THE UNIVER31?T OF YiC MK.1N

FUNCTION

Starting value of index. See Figure 28.

Increment of index. See Figure 28.

Final value of index. See Figure 28.

Material or signature under consideration

in calculating mean square error.

Weights used in likelihood decision rule,

indexed by START*, STP*, JEND*, see

Figure 28.

The amount of material under consideration

for each area.

Alien thresholds for likelihood

decision rule.

When SUMOUT=$ON$ only output Item

(4) is calculated.

P(1-4,1-21)
	

any	 0

TRUTH
	

any	 Garbage

LCUT(1-4)
	

any
	

1000

SU; SOUT
	

$ON$
	

off
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fps

Start

Step (11	 Point
Initialize

Read Data

°^P IZl
Was Last NSA the

LaO in This Group? NO

Yes

Fern Sums

F

Order of Steps -
Step(1) - At Start of Program
Step(21-Next Alter (1), First

After Each NSA

Process

Sep(5)-Any More NSA?

1

J Yes 
1 

No

Done

Step (5)

Doe. 9

Yee
hoes Ralfout=SONS?

Likely= SONS ?
No

Output • Pixels of
Add Weights P(I) Is z	 JM Yes Material for Each I
to Likelihoods LM 1

Find I for Which
Sum Is Smallest

Output Sums t# Each
is xZ a J(2) Yes Material for Each

Is x i CLCIIT(I)?
No

Yes
Output Above Sums

Is z9 { J(3y as Fraction of

Total a Pixels

Yen Is z 4	J141
Yes No

Does Sumaut=SONS

Yee

Output Above Sums
as Fraction of t
Non-Allen Pixels

If Any Proportion is
Less Than Tau, Set Yes

Does Thresh = SONS?
Output Sum (Amount)

It to Zero Totaa of Each Material

No

Does Normal = SONS? Does Errout vSONS?
Yes

No Y"

If Any Proportion Add Proportions of Output Mean Square Error

Is Less Than Tau, Each Material Into in Pixels for This Area

Set Itto Zero. Correct Sum
Normalize Remaining
Proportions to Sum Output % Mean Square

to One. Error for This Area

Output % Mean Square Output Mean Square

H
Error for All Areaa Error for All Are as

FIGURE 27. ALIENZ FLOWCHART
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DO FROM J(1) - START(1) 	 to	 J(I) - JL-D)(l) BY STEPS Ok STY(i)

DO FROM J(2) = START(2) 	 to	 J(2) - JFID(2) BY STEPS OF STP(2)

	

DO FROM J(3) = START(3) to 	 J(3) - JEND(3) BY STEPS OF STP(3)

DO FROM J(4) _ START(3) TO J(4) = JEND(4) BY STEPS OF STP(4)

LIKELIHOOD RULE	 CHI-SQUARED RULE

TAKE MINIMUM OF	 IS X1 < J(I)	 YES

no
L(I) + P(I,J(I))	 IS X2 < J(2)	 YES

no
FOR I=1, 2, 3, 4	 IS X3 < J(3)	 YES

no
IS X4 < J(4)	 YES

IS XI < LCUT(I)?

YES

CLASSIFIED
AS Ith DATA SET

FIGURE 28. EXPANSION OF ALIENZ DECISION RULE
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APPENDIX D

DESCRTYTION OF GEOM2

a

The distances obtained for the geometrical. signature analysis for

IMaX processing (GEOM2) are defined as follows. To avoid notational

complexity we will assume that a. specific subset of L+l signatures has

been .chosen and relabeled, if necessary, so that their means are denoted

by Al , A2,...,AL+j. and covariance matrices by Ml, M2 , ... ,Mh+l . Let HZ

denote the hyperplane of dimension'k=l:though the means A2,'.'.A.L+l and let

Z be the paint in. HI which maximizes the Gaussian density with parameters

Al , Ml . Then dl is defined by

d _ <Z Al, Mll (Z-A,)>

It has been show lay W. Richardson in Reference [2] that d may be

computed in .the following fashion. Let r denote the (L -1)x(L+I) matrix

with entries rAi' X-1A^.>; l < i, a < L+l.

Let ek denote the column vector of length L with 
all 

componentscomponents equal to

1, and let r* be the (L+2)x(L+2) matrix defined by

	

r = r 	 e 
l	

e	 O

^c
Then 

dz 
is the (l, l) element of the inverse of r l . More .gen ally

1.
	

-

l.d2 is the (i.i) ,element of the inverse of r i , I < i < k+l..
i

By some manipulation one can obtain a more convenitut form of the

Richardson result for the computation of the d i. Let Bil Al-Al and
t,

let Pi be the L x Lmatrix defined by
3

"
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<B2,1 , Ml B2 ^ 1>	 ...	 <62,1 , M1 B^ ^-, 1>

F,	 1	 --1

<BL+3.,1, MI 32,1> 
f1•	 < BL+I., l M11 	2

Set

r1	 eL-1
r^

t
ek-1	 0

Than -d.. is the (L,L) element of the inverse of r*. In general., -d2 is

the (L,L) element of the inverse of Q.
3.

D,1 OUTLINE OF THE PROGRAM

A. Input con.l:rol data, signatures. Store covariance terms in the

GAMMA matrix, and means in the MATRIX matrix.

B. For each signature (say, t a mth signature) repeat through B(3).

B(l) Assign MATRX2. , (T, 3) -( MATRIX(J,I) - MATRIX(M,I)

This moves the mth corner of the signature complex to the origin.

B(2) Assign MATRIX(I,J) -^- MATRX2(J,I) Invert this translated signature

complex

B(3) Assign GAMMA (M,I,J) {- MATRIXII,J) (GAMMA(M,I,J)-1)MATRX2(I,J)

C. For each signature (say, the mth si.grature) repeat through C(5).

C(1). For each comhaination of (NO--1) signatures, (X l X2 XNO_l) which

does not include the m th signature, select the following

elements of GAMMA(M,I,J)

(Xl , X1)	 (X1' XNO-1)

`1
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APPENDIX E

DESCRIPTION OF CLFiSTR

This program written in the . programming language.= as implemented

on an IBM 7044 computer, implements the clustering algorithms described ii

in Section 4^3.
L

E.1	 ALGORITHM ONE

1	 This is the default algorithm.. 	 The following variables must be set:
1

1

NCT3AN	 number of channels, if different from
4 . (must be <. 8.)

Any ^'OTNT control variables (i.e.,   NC, NV, ICODE l))(

LASTID-	 ID FIELD] of last NSA to be clustered. 	 Default

is $T.TMT y

'	 Rare;
,k

If only a very few clusters are . prociuced,. it may be necessary to

set RHOSRT to less than 8.	 With more than 5 channels,, increase

RHOSRT as follows:

RHOSRT - this should be set to

i=NCHAN 2
3

DI	 (Range of 2 standard:deviations in channel i)

1./2 i=1

1

New(KNCHAN)NCEM

Where KNCHAN
	

150.. for NCH &N =:I to. 6,. 100 for . NGHAN." 7,'70 f Or: . NCHAN = , B A

Also, set _REPLAC= RH^

If some clusters: contain too many data . points, or if : there ,are too . 9

many clusters produced, it maybe necessary to reset PERM and PERCT2.

.98..
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' PERCTI	 whenever a . cluste7r holds .more than PERCT of the points,
clustering is stopped.	 Default is .166.

PERCT2 -whenever the largest NUM clusters hold more than PERCT2 of

the points, clustering is stopped., default is .6669

k E.2	 ALGORITHM TWO
I	 ,:

All variables. are the same a:; in:algo.rithm one, except....

j INI'T - if INIT-$ON$, points from NSAis with differing FIRST SIR

J .	 CHARACTERS in the. ID field will.. be. separated, and these
first six characters: will be used-as the name of the
cluster; this is useful to identify multimodality.

i E.3	 ALGORITHR THREE.

POINT CONTROL VARIABLES (i.e., NC, NV, ICODE(1))

NSPACE.- must be set to $ON?

SEQ	 - if SEQ=$ON$, updating of means and variances will occur

after each point, otherwise aster each NSA.` Recommended

i $ON$ for < .20.00 points only,

NNIEB	 - if NNIEB=$01'F$, the linear classification role is used
for point assignment, otherwise, euclidian distance is

i
used,

NUM	 -- only the largest NUM clusters are displayed.

f NUM < 30 .,: default is 1.5...	 ..

LASTIb - as above.

NCHAN	 - as above but <.5.

E.4. HIS'TOGRAMMING

Hstogramming:	 After the completion of any of the above algorithms,

' a histogram of all the major. clusterscan be .obtained at - no : add tioual - cost.

This type of histogram has the advantage that it represents . the data set,

i sans noise-and gi;tures, and. it requires no.tape mounts.
J

HTS'T-$ON$-default is $ON$

MIN	 - the smallest data value displayed, default is I.
MAX	 - the largest data value displayed, default is 100.	 {
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COMCOV=$ON$, NSIG=2$, WEIGHT=$ON$*

SIGNATURE
DECKS

CLUSTERING ALGORITHM TWO, NO HISTOGRAMMING, LAST NSA ID IS $QQI.00$ u
FOUR CHANNELS

$COMPILE Na

POINT,(CLUSTR.)

EIM

$BINARY

CLUSTR.
OBJECT
DECK

$DATA

INIT=$ON$, LASTID=$QQ10O$*

NSA $SOY$

I

NSA WY$

NSA I S NSA= $CORN$
TO BE etc.
CLUSTERED NSA= $QQ100$*

CLUSTERING ALGORITHM THREE, UPDATE AFTER EACH POINT, LINEAR RULE FOUR CHANNELS

$COMPILE MAD

POINT.(CLUSTR.)

Elm

$BINARY

CLUSTR.
OBJECT
DECK

$DATA

NSPACE=$ON$, SEQ=$ON$, NNTEB=$OFF$*

NSA'S	
NSA=

TO BE
CLUSTERED NSA=	 $TTTTTT$*

k
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b 1

E.5	 LIST OF THE CONTROL VARIABLES

VARIABLE DEFAULT
NAME VALUE EXPLANATION

NCHAN 4 Number of channels to be used (<8) (This
must always be specified if different from 4)

TNIT $OFF$ An option to 'name' clusters, see algorithm 2.

NSPACE $OFF$ To effect use of algorithm 3, set NSPACE=$ON$

NUM 10 The most populous NUM clusters are used for
display (NUM < 30)

LASTID $TTTTTT$ This is the ID field of the last NSA used for
each operation.	 See examples

NNIEB $ON$ This specifies that the distance measure to
be used with algorithm 3 is the L1 or Euclidian
metric

SEQ $OFF$ When SEQ=$ON$, the means and variances in

I' algorithm 3 are updated after each point;

I

I

when off, after each pass

CUT(3) 10 Any cluster with > CUT(3) points in it will
have a signature deck punched up for it,
unless CARDS=$OFF$

CARDS $ON$ When CARDS=$OFF$, no signature decks are
punched.

PERM .166 In algorithms 1 and 2 whenever a cluster
contains more than PERM of the points, the
combining is halted.

PERCT'2 .666 In algorithms 1 and 2 whenever the NUM
largest clusters contain more than PERCT2
of the points, combining is halted.

HIST $ON$ Whenever HIST=$ON$, histograms of the clusters
will be made for each channel.

CMS Number of approximating cells. 	 Program runs
faster with fewer cells, but less accurately.



NSIG	 ---

WEIGHT	 $ON$

.

VARIABLE	 DEFAULT
Jvrt Mmi	VALUE

MIN	 1

MAX	 100

SMX	 ---

COMCOV	 $OFF$

CUT (2)	 2

THETA	 4

RHORST	 8.0

SIZE

EXPLANATION

CMX Defaults to: 	 150, for NCHAN=1-6
100, for NCHAN=7
70, for NCHAN=8

Smallest value displayed in histogramming
(MIN > 0)

Largest value displayed in histogramming
(MAX < 300)

Maximum number of points stored, in Algorithms 1
and 2
SMX Defaults to:	 800, for NCHAN=1-3

700, for NCHAN=4
500, for NCHAN=5-6
400, for NCHAN=7-8

Number of signatures to be combined, used
only with COMCOV=$ON$.

When WEIGHT=$00, combining of signatures is
weighted as to the number of points in each ;.i
signature.	 Used only with COMCOV--$ON$.

When COMCOV=$ON$, the program will 'cluster'
signatures, i.e., combine signatures on the
basis of high probability of misclassification

,i	 3

Any cluster with less than this number of
points in it is ignored for purposed of combining.

This is the 9 of algortihms 1 and 2 (step 1 of
description)

This is the a i?(0) of algorithms 1 and 2 (step 2 r
of description .:

Any cluster with a ai
2
<REPLACE has that oil set equal ii'

to REPLAC during the computation of the probability
of misclassification. 	 It is assumed that for a
cluster with a variance less than REPL&C has, the t':
estimate of the variance is poor.

----	 This is a vector giving the minimum and maximum
values of each channel, (SIZE(1)-max value of first
channel, SIZE(3)=max value of second channel, etc.), 	 1
used with algorithm 3 to specify the data space.

,v

i L.CLAC	 4
V
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APPENDIX F

DESCRIPTION OF NINE-POINT PROGRAM (NPM)

This program, written in the projramming language MAD as implemented on

a IBM 7094 computer performs the algorithm of nine-point mixtures.

It uses the output tape of LIMMIX as input, and determines the amount

of each material found in a region. T..: program NPM is a module of POINT,

a program which transfers data from the input tape to its modules on a

point-by-point basis. POINT calls its modules as follouj: STEP(l) of NPM

is transferred to before any processing takes place, STEP(4) after each

scanner line of data has been processed, and STEP(5) after each area in

the region has been processed. A call is made to the internal function

of NPM for each data point to be processed.

The organization of the program is as follows:

In STEP(l), input of control, variables, set-up and initialization is

done.

In STEP(4), after each line is processed, the actual decision rule

is implemented, and a running sum of the amount of each material

found is kept.

In STEP(5), after each area of the region is processed, the ID field

of the POINT control card is examined to determine whether or not

the end of the region has been reached, if so, the totals are printed

out, otherwise nothing is done.

In the internal function, the data which is passed by POINT is stored

into the vectors LINE, LINEI, LINE2, LINE3, LINE4, LINE5, for processing

after the end of a scanner line of data.

An outline of the program is as follows:

A. read in control data, initialize storage

B. for each point of data, store DATUM(2) in LINE, DATUM(4) in LINEI,

DATUM(5) in LINE2, DATUM(6) in LINE3, DATUM(7) in LINE4, DATUM(9) in LINE5.

Each DATUM is entered into the appropriate LINE vector in the position

corresponding to the data point's position in the scanner line.

DATIJK(_} is the identity of the recognition

DATUM(4) is the chi-squared level of the recognition (x 500)

104



-- {- I	 ' -^	 1	 I	 l	 I_ l

LIi71I	 FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

DATUM(5) is the proportion of material one in the mixture (x 500)

DATUM(6) is the proportion of material two in the mixture (x 500)

DATUM(7) is the code giving the identities of the materials in

the mixture

DATUM(9) is the chi--squared level of the mixture (x 500)

DATUM(2) and DATUM M are stored only if DATUM(2) < CHICUT, where CHICUT

is the t;Z of nine--point mixtures.
3.

C. After each line, perform the following for each point of the previous

data line;

C(l) take a vote of the 9 pixels forming a block around the center

pixel with regard to their identity, which is obtained from the

LINE vector.

C(2) find the largest and second largest vote totals and store these

in HOLD and HOLD2, with the number of the corresponding signature

in SAVE and 5AVE2,

C(3) if the vote is > HOWMNY (HOWMNX is the Nl of nine-point mixtures),

add one to the corresponding signature's total, which is kept in

SUM. Go to C.

C(4) if themte (C(3)) fails, examine LM1, to see if the center

pixel's chi-squared level is < CHI2 (CHI2 corresponds to 
Ti  

in

nine-point mixtures). if this chi--squared level is < CH12, accept

the center pixel's recognition and add one to the corresponding

signature's total,

C(5) if C(4) fails, examine HOLD and HOLD2, to see if they are 'both

CUT2 (CUT2 corresponds to N 2 in the nine-point mixtures), if this

is so, add (HOLD/(HOLD+HOLD2)) to the SAVE signature's total, and

(HOLD2/HOLD+HOLD2)) to the SAVE2 signature's total. Go to C.

C(6) ii C(5) fails, check LINES, to see if it is < CHICT2 (CHICT2

corresponds to n3 in nine-point mixtures). If this is so,

decode the combination number in LINE4 to determine which

materials are in the mixture and add the correct proportion to

each of these two material's totals (obtained from LINE2, LINE3)

after > CHICT2, call the pixel alien, and go to C.
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3.

D. After all the lines in the area have processed, examine the TD field

of POINT I s control card to determine whether or not the next area

is to he added to this one. If so, go to B, otherwise, print out

the totals in SUM, zero all sums and go to B.

E. End of Program.

VARIABLE DEFAULT	 EXPLOATION

CHICUT --	 III of nine-point mixtures

CH12 ---	 n2 of nine-point mixtures
CHICT2 --	 n2 of nine-point mixtures
NUMB. --	 N 	

of nine-point mixtures

NUM2 --	 N2 of nine-point mixtures
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