research

The perimeter of large planar Voronoi cells: a double-stranded random walk

Abstract

Let p_np\_n be the probability for a planar Poisson-Voronoi cell to have exactly nn sides. We construct the asymptotic expansion of logp_n\log p\_n up to terms that vanish as nn\to\infty. We show that {\it two independent biased random walks} executed by the polar angle determine the trajectory of the cell perimeter. We find the limit distribution of (i) the angle between two successive vertex vectors, and (ii) the one between two successive perimeter segments. We obtain the probability law for the perimeter's long wavelength deviations from circularity. We prove Lewis' law and show that it has coefficient 1/4.Comment: Slightly extended version; journal reference adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019