1,013 research outputs found

    Estimates of genetic parameters of distal limb fracture and superficial digital flexor tendon injury in UK Thoroughbred racehorses

    Get PDF
    A retrospective cohort study of distal limb fracture and superficial digital flexor tendon (SDFT) injury in Thoroughbred racehorses was conducted using health records generated by the British Horseracing Authority (BHA) between 2000 and 2010. After excluding records of horses that had both flat and jump racing starts, repeated records were reduced to a single binary record per horse (<i>n</i> = 66,507, 2982 sires), and the heritability of each condition was estimated using residual maximum likelihood (REML) with animal logistic regression models. Similarly, the heritability of each condition was estimated for the flat racing and jump racing populations separately. Bivariate mixed models were used to generate estimates of genetic correlations between SDFT injury and distal limb fracture. The heritability of distal limb fracture ranged from 0.21 to 0.37. The heritability of SDFT injury ranged from 0.31 to 0.34. SDFT injury and distal limb fracture were positively genetically correlated. These findings suggest that reductions in the risk of the conditions studied could be attempted using targeted breeding strategies

    Observational constraints on the curvaton model of inflation

    Get PDF
    Simple curvaton models can generate a mixture of of correlated primordial adiabatic and isocurvature perturbations. The baryon and cold dark matter isocurvature modes differ only by an observationally null mode in which the two perturbations almost exactly compensate, and therefore have proportional effects at linear order. We discuss the CMB anisotropy in general mixed models, and give a simple approximate analytic result for the large scale CMB anisotropy. Working numerically we use the latest WMAP observations and a variety of other data to constrain the curvaton model. We find that models with an isocurvature contribution are not favored relative to simple purely adiabatic models. However a significant primordial totally correlated baryon isocurvature perturbation is not ruled out. Certain classes of curvaton model are thereby ruled out, other classes predict enough non-Gaussianity to be detectable by the Planck satellite. In the appendices we review the relevant equations in the covariant formulation and give series solutions for the radiation dominated era.Comment: Minor changes and corrections to match version accepted by PR

    Non-Gaussian isocurvature perturbations in dark radiation

    Full text link
    We study non-Gaussian properties of the isocurvature perturbations in the dark radiation, which consists of the active neutrinos and extra light species, if exist. We first derive expressions for the bispectra of primordial perturbations which are mixtures of curvature and dark radiation isocurvature perturbations. We also discuss CMB bispectra produced in our model and forecast CMB constraints on the nonlinearity parameters based on the Fisher matrix analysis. Some concrete particle physics motivated models are presented in which large isocurvature perturbations in extra light species and/or the neutrino density isocurvature perturbations as well as their non-Gaussianities may be generated. Thus detections of non-Gaussianity in the dark radiation isocurvature perturbation will give us an opportunity to identify the origin of extra light species and lepton asymmetry.Comment: 32 pages, 7 figure

    Inhomogeneous non-Gaussianity

    Get PDF
    We propose a method to probe higher-order correlators of the primordial density field through the inhomogeneity of local non-Gaussian parameters, such as f_NL, measured within smaller patches of the sky. Correlators between n-point functions measured in one patch of the sky and k-point functions measured in another patch depend upon the (n+k)-point functions over the entire sky. The inhomogeneity of non-Gaussian parameters may be a feasible way to detect or constrain higher-order correlators in local models of non-Gaussianity, as well as to distinguish between single and multiple-source scenarios for generating the primordial density perturbation, and more generally to probe the details of inflationary physics.Comment: 16 pages, 2 figures; v2: Minor changes and references added. Matches the published versio

    Truthmakers and modality

    Get PDF
    This paper attempts to locate, within an actualist ontology, truthmakers for modal truths: truths of the form or . In section 1 I motivate the demand for substantial truthmakers for modal truths. In section 2 I criticise Armstrong’s account of truthmakers for modal truths. In section 3 I examine essentialism and defend an account of what makes essentialist attributions true, but I argue that this does not solve the problem of modal truth in general. In section 4 I discuss, and dismiss, a theistic account of the source of modal truth proposed by Alexander Pruss. In section 5 I offer a means of (dis)solving the problem

    The effect of neutrinos on the matter distribution as probed by the Intergalactic Medium

    Full text link
    We present a suite of full hydrodynamical cosmological simulations that quantitatively address the impact of neutrinos on the (mildly non-linear) spatial distribution of matter and in particular on the neutral hydrogen distribution in the Intergalactic Medium (IGM), which is responsible for the intervening Lyman-alpha absorption in quasar spectra. The free-streaming of neutrinos results in a (non-linear) scale-dependent suppression of power spectrum of the total matter distribution at scales probed by Lyman-alpha forest data which is larger than the linear theory prediction by about 25% and strongly redshift dependent. By extracting a set of realistic mock quasar spectra, we quantify the effect of neutrinos on the flux probability distribution function and flux power spectrum. The differences in the matter power spectra translate into a ~2.5% (5%) difference in the flux power spectrum for neutrino masses with Sigma m_{\nu} = 0.3 eV (0.6 eV). This rather small effect is difficult to detect from present Lyman-alpha forest data and nearly perfectly degenerate with the overall amplitude of the matter power spectrum as characterised by sigma_8. If the results of the numerical simulations are normalized to have the same sigma_8 in the initial conditions, then neutrinos produce a smaller suppression in the flux power of about 3% (5%) for Sigma m_{\nu} = 0.6eV(1.2eV)whencomparedtoasimulationwithoutneutrinos.WepresentconstraintsonneutrinomassesusingtheSloanDigitalSkySurveyfluxpowerspectrumaloneandfindanupperlimitofSigmamν<0.9 eV (1.2 eV) when compared to a simulation without neutrinos. We present constraints on neutrino masses using the Sloan Digital Sky Survey flux power spectrum alone and find an upper limit of Sigma m_{\nu} < 0.9 eV (2 sigma C.L.), comparable to constraints obtained from the cosmic microwave background data or other large scale structure probes.Comment: 38 pages, 21 figures. One section and references added. JCAP in pres

    WMAP constraints on inflationary models with global defects

    Get PDF
    We use the cosmic microwave background angular power spectra to place upper limits on the degree to which global defects may have aided cosmic structure formation. We explore this under the inflationary paradigm, but with the addition of textures resulting from the breaking of a global O(4) symmetry during the early stages of the Universe. As a measure of their contribution, we use the fraction of the temperature power spectrum that is attributed to the defects at a multipole of 10. However, we find a parameter degeneracy enabling a fit to the first-year WMAP data to be made even with a significant defect fraction. This degeneracy involves the baryon fraction and the Hubble constant, plus the normalization and tilt of the primordial power spectrum. Hence, constraints on these cosmological parameters are weakened. Combining the WMAP data with a constraint on the physical baryon fraction from big bang nucleosynthesis calculations and high-redshift deuterium abundance, limits the extent of the degeneracy and gives an upper bound on the defect fraction of 0.13 (95% confidence).Comment: 10pp LaTeX/RevTeX, 6 eps figs; matches accepted versio

    Health effects of Indigenous language use and revitalization: a realist review

    Full text link
    Background: Indigenous populations across the world are more likely to suffer from poor health outcomes when compared to other racial and ethnic groups. Although these disparities have many sources, one protective factor that has become increasingly apparent is the continued use and/or revitalization of traditional Indigenous lifeways: Indigenous language in particular. This realist review is aimed at bringing together the literature that addresses effects of language use and revitalization on mental and physical health. Methods: Purposive bibliographic searches on Scopus were conducted to identify relevant publications, further augmented by forward citation chaining. Included publications (qualitative and quantitative) described health outcomes for groups of Indigenous people who either did or did not learn and/or use their ancestral language. The geographical area studied was restricted to the Americas, Australia or New Zealand. Publications that were not written in English, Spanish, French, Portuguese or German were excluded. A realist approach was followed to identify positive, neutral or negative effects of language use and/or acquisition on health, with both qualitative and quantitative measures considered. Results: The bibliographic search yielded a total of 3508 possible publications of which 130 publications were included in the realist analysis. The largest proportion of the outcomes addressed in the studies (62.1%) reported positive effects. Neutral outcomes accounted for 16.6% of the reported effects. Negative effects (21.4%) were often qualifed by such issues as possible cultural use of tobacco, testing educational outcomes in a student\u27s second language, and correlation with socioeconomic status (SES), health access, or social determinants of health; it is of note that the positive correlations with language use just as frequently occurred with these issues as the negative correlations did. Conclusions: Language use and revitalization emerge as protective factors in the health of Indigenous populations. Benefits of language programs in tribal and other settings should be considered a cost-effective way of improving outcomes in multiple domains

    Signatures of Relativistic Neutrinos in CMB Anisotropy and Matter Clustering

    Full text link
    We present a detailed analytical study of ultra-relativistic neutrinos in cosmological perturbation theory and of the observable signatures of inhomogeneities in the cosmic neutrino background. We note that a modification of perturbation variables that removes all the time derivatives of scalar gravitational potentials from the dynamical equations simplifies their solution notably. The used perturbations of particle number per coordinate, not proper, volume are generally constant on superhorizon scales. In real space an analytical analysis can be extended beyond fluids to neutrinos. The faster cosmological expansion due to the neutrino background changes the acoustic and damping angular scales of the cosmic microwave background (CMB). But we find that equivalent changes can be produced by varying other standard parameters, including the primordial helium abundance. The low-l integrated Sachs-Wolfe effect is also not sensitive to neutrinos. However, the gravity of neutrino perturbations suppresses the CMB acoustic peaks for the multipoles with l>~200 while it enhances the amplitude of matter fluctuations on these scales. In addition, the perturbations of relativistic neutrinos generate a *unique phase shift* of the CMB acoustic oscillations that for adiabatic initial conditions cannot be caused by any other standard physics. The origin of the shift is traced to neutrino free-streaming velocity exceeding the sound speed of the photon-baryon plasma. We find that from a high resolution, low noise instrument such as CMBPOL the effective number of light neutrino species can be determined with an accuracy of sigma(N_nu) = 0.05 to 0.09, depending on the constraints on the helium abundance.Comment: 38 pages, 7 figures. Version accepted for publication in PR
    • …
    corecore