736 research outputs found

    Repetitive behavior profiles: Consistency across autism spectrum disorder cohorts and divergence from Prader–Willi syndrome

    Get PDF
    Restricted and repetitive behavior (RRB) is a group of heterogeneous maladaptive behaviors. RRB is one of the key diagnostic features of autism spectrum disorders (ASDs) and also commonly observed in Prader–Willi syndrome (PWS). In this study, we assessed RRB using the Repetitive Behavior Scale-Revised (RBS-R) in two ASD samples (University of Illinois at Chicago [UIC] and University of Florida [UF]) and one PWS sample. We compared the RBS-R item endorsements across three ASD cohorts (UIC, UF and an ASD sample from Lam, The Repetitive Behavior Scale-Revised: independent validation and the effect of subject variables, PhD thesis, 2004), and a PWS sample. We also compared the mean RBS-R subscale/sum scores across the UIC, UF and PWS samples; across the combined ASD (UIC + UF), PWS-deletion and PWS-disomy groups; and across the combined ASD sample, PWS subgroup with a Social Communication Questionnaire (SCQ) score ≥15, and PWS subgroup with a SCQ score <15. Despite the highly heterogeneous nature, the three ASD samples (UIC, UF and Lam’s) showed a similar pattern of the RBS-R endorsements, and the mean RBS-R scores were not different between the UIC and UF samples. However, higher RRB was noted in the ASD sample compared with the PWS sample, as well as in the PWS subgroup with a SCQ score ≥15 compared with the PWS subgroup with a SCQ score <15. Study limitations include a small sample size, a wide age range of our participants, and not controlling for potential covariates. A future replication study using a larger sample and further investigation into the genetic bases of overlapping ASD and RRB phenomenology are needed, given the higher RRB in the PWS subgroup with a SCQ score ≥15

    PCA-based lung motion model

    Full text link
    Organ motion induced by respiration may cause clinically significant targeting errors and greatly degrade the effectiveness of conformal radiotherapy. It is therefore crucial to be able to model respiratory motion accurately. A recently proposed lung motion model based on principal component analysis (PCA) has been shown to be promising on a few patients. However, there is still a need to understand the underlying reason why it works. In this paper, we present a much deeper and detailed analysis of the PCA-based lung motion model. We provide the theoretical justification of the effectiveness of PCA in modeling lung motion. We also prove that under certain conditions, the PCA motion model is equivalent to 5D motion model, which is based on physiology and anatomy of the lung. The modeling power of PCA model was tested on clinical data and the average 3D error was found to be below 1 mm.Comment: 4 pages, 1 figure. submitted to International Conference on the use of Computers in Radiation Therapy 201

    Aerobiology over Antarctica – a new initiative for atmospheric ecology

    Get PDF
    The role of aerial dispersal in shaping patterns of biodiversity remains poorly understood, mainly due to a lack of coordinated efforts in gathering data at appropriate temporal and spatial scales. It has been long known that the rate of dispersal to an ecosystem can significantly influence ecosystem dynamics, and that aerial transport has been identified as an important source of biological input to remote locations. With the considerable effort devoted in recent decades to understanding atmospheric circulation in the south-polar region, a unique opportunity has emerged to investigate the atmospheric ecology of Antarctica, from regional to continental scales. This concept note identifies key questions in Antarctic microbial biogeography and the need for standardized sampling and analysis protocols to address such questions. A consortium of polar aerobiologists is established to bring together researchers with a common interest in the airborne dispersion of microbes and other propagules in the Antarctic, with opportunities for comparative studies in the Arctic

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations

    Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis

    Get PDF
    Background Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy. Methods We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance. Results We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography. Conclusion Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data
    corecore