212 research outputs found

    Structure Functions of the Nucleon and their Interpretation

    Get PDF
    The current status of measurements of the nucleon structure functions and their understanding is reviewed. The fixed target experiments E665, CCFR and NMC and the HERA experiments H1 and ZEUS are discussed in some detail. The extraction of parton momentum distribution functions from global fits is described, with particular attention paid to much improved information on the gluon momentum distribution. The status of alpha_s measurements from deep inelastic data is reviewed. Models and non-perturbative approaches for the parton input distributions are outlined. The impact on the phenomenology of QCD of the data at very low values of the Bjorken x variable is discussed in detail. Recent advances in the understanding of the transition from deep inelastic scattering to photoproduction are summarised. Some brief comments are made on the recent HERA measurements of the ep NC and CC cross-sections at very high Q2.Comment: 196 pages, 79 figures, uses ijmpa.sty and psfig.tex (included

    Working Group Report on the Structure of the Proton

    Get PDF
    We summarize the developments on the structure of the proton that were studied at the Workshop on "HERA Physics" that was held in Durham in September 1995. We survey the latest structure function data; we overview the QCD interpretations of the measurements of the structure functions and of final state processes; we discuss charm production and the spin properties of the proton.Comment: 45 pages, latex file using epsfig and ioplppt macros. Figures included, but full resolution figure files and postscript file of the whole paper are available via anonymous ftp at ftp://cpt1.dur.ac.uk/pub/preprints/dtp96/dtp962

    Forward jet production in deep inelastic ep scattering and low-x parton dynamics at HERA

    Get PDF
    Differential inclusive jet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector. Three phase-space regions have been selected in order to study parton dynamics where the effects of BFKL evolution might be present. The measurements have been compared to the predictions of leading-logarithm parton shower Monte Carlo models and fixed-order perturbative QCD calculations. In the forward region, QCD calculations at order alpha_s^1 underestimate the data up to an order of magnitude at low x. An improved description of the data in this region is obtained by including QCD corrections at order alpha_s^2, which account for the lowest-order t-channel gluon-exchange diagrams, highlighting the importance of such terms in parton dynamics at low x.Comment: 25 pages, 4 figure

    Parents and Teachers Make Different Contributions to a Shared Perspective on Hyperactive–Impulsive and Inattentive Symptoms: A Multivariate Analysis of Parent and Teacher Ratings on the Symptom Domains of ADHD

    Get PDF
    Attention deficit hyperactivity disorder (ADHD) is characterised by developmentally inappropriate and impairing levels of inattentive and hyperactive–impulsive behaviours. We aimed to investigate the differential effects of parent and teacher ratings on inattention and hyperactivity–impulsivity and the extent of genetic overlap between the two behavioural dimensions. Multivariate structural equation modelling was performed on DSM-IV based ADHD ratings by parents and teachers collected on a general population sample of 672 twin pairs, at ages 7–10 years. This study is the first to simultaneously use parent and teacher ratings in twin modelling to examine the effects of different raters on the two behavioural dimensions of ADHD. The findings indicated that hyperactivity–impulsivity and inattention load on to separate latent factors that represent a common behavioural view for both parents and teachers, although there are additional aspects to the observations of these behaviours that are unique to each type of rater. The findings further indicate some shared aetiology for hyperactivity–impulsivity and inattention as measured by both parent and teacher ratings, in agreement with previous findings on the aetiology of the two symptom dimensions of ADHD

    Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas

    Get PDF
    Purpose BRAF V600E is a potentially highly targetable mutation detected in a subset of pediatric low-grade gliomas (PLGGs). Its biologic and clinical effect within this diverse group of tumors remains unknown. Patients and Methods A combined clinical and genetic institutional study of patients with PLGGs with long-term follow-up was performed (N = 510). Clinical and treatment data of patients with BRAF V600E mutated PLGG (n = 99) were compared with a large international independent cohort of patients with BRAF V600E mutated-PLGG (n = 180). Results BRAF V600E mutation was detected in 69 of 405 patients (17%) with PLGG across a broad spectrum of histologies and sites, including midline locations, which are not often routinely biopsied in clinical practice. Patients with BRAF V600E PLGG exhibited poor outcomes after chemotherapy and radiation therapies that resulted in a 10-year progression-free survival of 27% (95% CI, 12.1% to 41.9%) and 60.2% (95% CI, 53.3% to 67.1%) for BRAF V600E and wild-type PLGG, respectively (P < .001). Additional multivariable clinical and molecular stratification revealed that the extent of resection and CDKN2A deletion contributed independently to poor outcome in BRAF V600E PLGG. A similar independent role for CDKN2A and resection on outcome were observed in the independent cohort. Quantitative imaging analysis revealed progressive disease and a lack of response to conventional chemotherapy in most patients with BRAF V600E PLGG. Conclusion BRAF V600E PLGG constitutes a distinct entity with poor prognosis when treated with current adjuvant therapy. (C) 2017 by American Society of Clinical Oncolog

    Production of exclusive dijets in diffractive deep inelastic scattering at HERA

    Get PDF

    Positive Social Interactions and the Human Body at Work: Linking Organizations and Physiology

    Full text link

    Incorporating concepts of inequality and inequity into health benefits analysis

    Get PDF
    BACKGROUND: Although environmental policy decisions are often based in part on both risk assessment information and environmental justice concerns, formalized approaches for addressing inequality or inequity when estimating the health benefits of pollution control have been lacking. Inequality indicators that fulfill basic axioms and agree with relevant definitions and concepts in health benefits analysis and environmental justice analysis can allow for quantitative examination of efficiency-equality tradeoffs in pollution control policies. METHODS: To develop appropriate inequality indicators for health benefits analysis, we provide relevant definitions from the fields of risk assessment and environmental justice and consider the implications. We evaluate axioms proposed in past studies of inequality indicators and develop additional axioms relevant to this context. We survey the literature on previous applications of inequality indicators and evaluate five candidate indicators in reference to our proposed axioms. We present an illustrative pollution control example to determine whether our selected indicators provide interpretable information. RESULTS AND CONCLUSIONS: We conclude that an inequality indicator for health benefits analysis should not decrease when risk is transferred from a low-risk to high-risk person, and that it should decrease when risk is transferred from a high-risk to low-risk person (Pigou-Dalton transfer principle), and that it should be able to have total inequality divided into its constituent parts (subgroup decomposability). We additionally propose that an ideal indicator should avoid value judgments about the relative importance of transfers at different percentiles of the risk distribution, incorporate health risk with evidence about differential susceptibility, include baseline distributions of risk, use appropriate geographic resolution and scope, and consider multiple competing policy alternatives. Given these criteria, we select the Atkinson index as the single indicator most appropriate for health benefits analysis, with other indicators useful for sensitivity analysis. Our illustrative pollution control example demonstrates how these indices can help a policy maker determine control strategies that are dominated from an efficiency and equality standpoint, those that are dominated for some but not all societal viewpoints on inequality averseness, and those that are on the optimal efficiency-equality frontier, allowing for more informed pollution control policies

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore