491 research outputs found

    Stochastic motion of test particle implies that G varies with time

    Full text link
    The aim of this letter is to propose a new description to the time varying gravitational constant problem, which naturally implements the Dirac's large numbers hypothesis in a new proposed holographic scenario for the origin of gravity as an entropic force. We survey the effect of the Stochastic motion of the test particle in Verlinde's scenario for gravity\cite{Verlinde}. Firstly we show that we must get the equipartition values for tt\rightarrow\infty which leads to the usual Newtonian gravitational constant. Secondly,the stochastic (Brownian) essence of the motion of the test particle, modifies the Newton's 2'nd law. The direct result is that the Newtonian constant has been time dependence in resemblance as \cite{Running}.Comment: Accepted in International Journal of Theoretical Physic

    Dynamical Decoupling Using Slow Pulses: Efficient Suppression of 1/f Noise

    Get PDF
    The application of dynamical decoupling pulses to a single qubit interacting with a linear harmonic oscillator bath with 1/f1/f spectral density is studied, and compared to the Ohmic case. Decoupling pulses that are slower than the fastest bath time-scale are shown to drastically reduce the decoherence rate in the 1/f1/f case. Contrary to conclusions drawn from previous studies, this shows that dynamical decoupling pulses do not always have to be ultra-fast. Our results explain a recent experiment in which dephasing due to 1/f1/f charge noise affecting a charge qubit in a small superconducting electrode was successfully suppressed using spin-echo-type gate-voltage pulses.Comment: 5 pages, 3 figures. v2: Many changes and update

    Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides

    Get PDF
    We report the observation of second-harmonic generation in stoichiometric silicon nitride waveguides grown via low-pressure chemical vapour deposition. Quasi-rectangular waveguides with a large cross section were used, with a height of 1 {\mu}m and various different widths, from 0.6 to 1.2 {\mu}m, and with various lengths from 22 to 74 mm. Using a mode-locked laser delivering 6-ps pulses at 1064 nm wavelength with a repetition rate of 20 MHz, 15% of the incoming power was coupled through the waveguide, making maximum average powers of up to 15 mW available in the waveguide. Second-harmonic output was observed with a delay of minutes to several hours after the initial turn-on of pump radiation, showing a fast growth rate between 104^{-4} to 102^{-2} s1^{-1}, with the shortest delay and highest growth rate at the highest input power. After this first, initial build-up, the second-harmonic became generated instantly with each new turn-on of the pump laser power. Phase matching was found to be present independent of the used waveguide width, although the latter changes the fundamental and second-harmonic phase velocities. We address the presence of a second-order nonlinearity and phase matching, involving an initial, power-dependent build-up, to the coherent photogalvanic effect. The effect, via the third-order nonlinearity and multiphoton absorption leads to a spatially patterned charge separation, which generates a spatially periodic, semi-permanent, DC-field-induced second-order susceptibility with a period that is appropriate for quasi-phase matching. The maximum measured second-harmonic conversion efficiency amounts to 0.4% in a waveguide with 0.9 x 1 {\mu}m2^2 cross section and 36 mm length, corresponding to 53 {\mu}W at 532 nm with 13 mW of IR input coupled into the waveguide. The according χ(2)\chi^{(2)} amounts to 3.7 pm/V, as retrieved from the measured conversion efficiency.Comment: 20 pages, 10 figure

    Conformal linear gravity in de Sitter space II

    Full text link
    From the group theoretical point of view, it is proved that the theory of linear conformal gravity should be written in terms of a tensor field of rank-3 and mixed symmetry [Binegar, et al, Phys. Rev. D 27, (1983) 2249]. We obtained such a field equation in de Sitter space [Takook, et al, J. Math. Phys. 51, (2010) 032503]. In this paper, a proper solution to this equation is obtained as a product of a generalized polarization tensor and a massless scalar field and then the conformally invariant two-point function is calculated. This two-point function is de Sitter invariant and free of any pathological large-distance behavior.Comment: 16 pages, no figure, published versio

    Erratum To: Quality Of Sweat Test (st) Based On The Proportion Of Sweat Sodium (na) And Sweat Chloride (cl) As Diagnostic Parameter Of Cystic Fibrosis: Are We On The Right Way?

    Get PDF
    During production of the original article [1] the Methods section included an incorrect sentence. The following sentence "For the analysis of variables with numerical distribution, Fisher's exact test and one-way analysis of variance were used" should be corrected as "For the analysis of variables with numerical distribution, Student's t-test and one-way analysis of variance were used". © The Author(s).12

    Evidence Of Protein Collective Motions On The Picosecond Time Scale

    Get PDF
    We investigate the presence of structural collective motions on a picosecond time scale for the heme protein, cytochrome c, as a function of oxidation and hydration, using terahertz (THz) time-domain spectroscopy and molecular dynamics simulations. The THz response dramatically increases with oxidation, with the largest increase for lowest hydrations and highest frequencies. For both oxidation states the THz response rapidly increases with hydration saturating above ~25% (g H2O/g protein). Quasi-harmonic vibrational modes and dipole-dipole correlation functions are calculated from molecular dynamics trajectories. The collective mode density of states alone reproduces the measured hydration dependence providing strong evidence of the existence of these motions. The large oxidation dependence is reproduced only by the dipole-dipole correlation function, indicating the contrast arises from diffusive motions consistent with structural changes occurring in the vicinity of a buried internal water molecule

    Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Background: Lower muscle strength in midlife predicts disability and mortality in later life. Bloodborne factors, including growth differentiation factor 11 (GDF11), have been linked to muscle regeneration in animal models. We aimed to identify gene transcripts associated with muscle strength in adults. Methods: Meta-analysis of whole blood gene expression (overall 17,534 unique genes measured by microarray) and hand-grip strength in four independent cohorts (n=7,781, ages: 20-104 years, weighted mean=56), adjusted for age, sex, height, weight, and leukocyte subtypes. Separate analyses were performed in subsets (older/younger than 60, male/female). Results: Expression levels of 221 genes were associated with strength after adjustment for cofactors and for multiple statistical testing, including ALAS2 (rate limiting enzyme in heme synthesis), PRF1 (perforin, a cytotoxic protein associated with inflammation), IGF1R and IGF2BP2 (both insulin like growth factor related). We identified statistical enrichment for hemoglobin biosynthesis, innate immune activation and the stress response. Ten genes were only associated in younger individuals, four in males only and one in females only. For example PIK3R2 (a negative regulator of PI3K/AKT growth pathway) was negatively associated with muscle strength in younger (=60 years). We also show that 115 genes (52%) have not previously been linked to muscle in NCBI PubMed abstracts Conclusions: This first large-scale transcriptome study of muscle strength in human adults confirmed associations with known pathways and provides new evidence for over half of the genes identified. There may be age and sex specific gene expression signatures in blood for muscle strength.Wellcome TrustFHS gene expression profiling was funded through the Division of Intramural Research (Principal Investigator, Daniel Levy), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD. Dr. Murabito is supported by NIH grant R01AG029451. Dr. Kiel is supported by NIH R01 AR41398. The Framingham Heart Study is supported by National Heart, Lung, and Blood Institute contract N01-HC-25195.The InCHIANTI study was supported in part by the Intramural Research Program, National Institute on Aging, NIH, Baltimore MD USA. D.M. and L.W.H. were generously supported by a Wellcome Trust Institutional Strategic Support Award (WT097835MF). W.E.H. was funded by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health in EnglandThe infrastructure for the NESDA study (www.nesda.nl) is funded through the Geestkracht program of the Netherlands Organisation for Health Research and Development (Zon-Mw, grant number 10-000-1002) and is supported by participating universities and mental health care organizations (VU University Medical Center, GGZ inGeest, Arkin, Leiden University Medical Center, GGZ Rivierduinen, University Medical Center Groningen, Lentis, GGZ Friesland, GGZ Drenthe, Scientific Institute for Quality of Healthcare (IQ healthcare), Netherlands Institute for Health Services Research (NIVEL) and Netherlands Institute of Mental Health and Addiction (Trimbos Institute).The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012), the Research Institute for Diseases in the Elderly (014-93- 28 015; RIDE2), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of RNA-expression array data for the Rotterdam Study was executed and funded by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Netherlands. We thank Marjolein Peters, MSc, Ms. Mila Jhamai, Ms. Jeannette M. Vergeer-Drop, Ms. Bernadette van Ast-Copier, Mr. Marijn Verkerk and Jeroen van Rooij, BSc for their help in creating the RNA array expression databaseSHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania, and the network ‘Greifswald Approach to Individualized Medicine (GANI_MED)’ funded by the Federal Ministry of Education and Research (grant 03IS2061A). The University of Greifswald is a member of the 'Center of Knowledge Interchange' program of the Siemens AG and the Caché Campus program of the InterSystems GmbH
    corecore