519 research outputs found

    Shape-Driven Selection Effects for Aspherical Near-Earth Objects in Systematic Surveys

    Full text link
    The apparent magnitude of elongated small bodies is time-dependent over their rotation phase. Therefore, previously undiscovered aspherical minor planets may experience a shape-driven selection effect in systematic surveys versus their spherical counterparts. In this study, we conduct injection-recovery exercises of synthetic asteroid lightcurves using a simple model to quantify the effect of varying axial ratio on detection efficiencies. We find that high-amplitude lightcurves are confronted with adverse selection effects for survey cadences and discovery thresholds for constructing tracklets that are representative of modern and proposed future NEO searches. Furthermore, we illustrate the possible hazards of drawing population-level inferences on an underlying reservoir of elongated small bodies. If physical size and characteristic axial ratios are correlated, then size-frequency distributions may require revision at small diameters. In particular, this effect could alter the estimated populations of near-Earth objects. We conclude by discussing the applicability of our results to various other classes of solar system minor planets and interstellar interlopers, as well as discuss future work that may further interrogate this detection bias.Comment: 21 pages, 10 figure, 1 table. Accepted for publication in Icarus. (small typo fixed in v2

    Interstellar Comets from Post-Main Sequence Systems as Tracers of Extrasolar Oort Clouds

    Full text link
    Interstellar small bodies are unique probes into the histories of exoplanetary systems. One hypothesized class of interlopers are "Jurads," exo-comets released into the Milky Way during the post-main sequence as the thermally-pulsing asymptotic giant branch (AGB) host stars lose mass. In this study, we assess the prospects for the Legacy Survey of Space and Time (LSST) to detect a Jurad and examine whether such an interloper would be observationally distinguishable from exo-comets ejected during the (pre-)main sequence. Using analytic and numerical methods, we estimate the fraction of exo-Oort Cloud objects that are released from 1-8 solar mass stars during post-main sequence evolution. We quantify the extent to which small bodies are altered by the increased luminosity and stellar outflows during the AGB, finding that some Jurads may lack hypervolatiles and that stellar winds could deposit dust that covers the entire exo-comet surface. Next, we construct models of the interstellar small body reservoir for various size-frequency distribution slopes, characteristic sizes, and the total mass sequestered in the minor planets of exo-Oort Clouds. Even with the LSST's increased search volume compared to contemporary surveys, we find that detecting a Jurad is unlikely but not infeasible given the current understanding of (exo)planet formation.Comment: 28 pages, 13 figures; accepted to PS

    Global distribution of the decay timescale of mixed layer inertial motions observed by satellite-tracked drifters

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C11010, doi:10.1029/2008JC005216.The decay timescale of mixed layer inertial amplitudes has been estimated from satellite tracked drifter trajectories from 1990 to 2004 as the e-folding timescale of the temporal correlation functions. The decay timescales increase with latitude in all basins except the North Atlantic. A beta dispersion model shows that dephasing leads to meridional variations of the decay timescale in the North Pacific and the Southern Ocean, but meridional variations of the buoyancy structure in the North Atlantic act to compensate the beta effect, leading to a lack of meridional variation of the decay timescale in that ocean.Jong Jin Park was supported by a WHOI postdoctoral scholarship. Ray Schmitt acknowledges NSF grant OCE 84794900. This study was partly supported by ‘‘A Study on the Monitoring of the Global Ocean Variability with ARGO Program’’ in Meteorological Research Institute/KMA

    The Milky Way's circular velocity curve between 4 and 14 kpc from APOGEE data

    Full text link
    We measure the Milky Way's rotation curve over the Galactocentric range 4 kpc <~ R <~ 14 kpc from the first year of data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). We model the line-of-sight velocities of 3,365 stars in fourteen fields with b = 0 deg between 30 deg < l < 210 deg out to distances of 10 kpc using an axisymmetric kinematical model that includes a correction for the asymmetric drift of the warm tracer population (\sigma_R ~ 35 km/s). We determine the local value of the circular velocity to be V_c(R_0) = 218 +/- 6 km/s and find that the rotation curve is approximately flat with a local derivative between -3.0 km/s/kpc and 0.4 km/s/kpc. We also measure the Sun's position and velocity in the Galactocentric rest frame, finding the distance to the Galactic center to be 8 kpc < R_0 < 9 kpc, radial velocity V_{R,sun} = -10 +/- 1 km/s, and rotational velocity V_{\phi,sun} = 242^{+10}_{-3} km/s, in good agreement with local measurements of the Sun's radial velocity and with the observed proper motion of Sgr A*. We investigate various systematic uncertainties and find that these are limited to offsets at the percent level, ~2 km/s in V_c. Marginalizing over all the systematics that we consider, we find that V_c(R_0) 99% confidence. We find an offset between the Sun's rotational velocity and the local circular velocity of 26 +/- 3 km/s, which is larger than the locally-measured solar motion of 12 km/s. This larger offset reconciles our value for V_c with recent claims that V_c >~ 240 km/s. Combining our results with other data, we find that the Milky Way's dark-halo mass within the virial radius is ~8x10^{11} M_sun.Comment: submitted to Ap

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Expression and Function of Androgen Receptor Coactivator p44/Mep50/WDR77 in Ovarian Cancer

    Get PDF
    Hormones, including estrogen and progesterone, and their receptors play an important role in the development and progression of ovarian carcinoma. Androgen, its receptor and coactivators have also been implicated in these processes. p44/Mep50/WDR77 was identified as a subunit of the methylosome complex and lately characterized as a steroid receptor coactivator that enhances androgen receptor as well as estrogen receptor-mediated transcriptional activity in a ligand-dependent manner. We previously described distinct expression and function of p44 in prostate, testis, and breast cancers. In this report, we examined the expression and function of p44 in ovarian cancer. In contrast to findings in prostate and testicular cancer and similar to breast cancer, p44 shows strong cytoplasmic localization in morphologically normal ovarian surface and fallopian tube epithelia, while nuclear p44 is observed in invasive ovarian carcinoma. We observed that p44 can serve as a coactivator of both androgen receptor (AR) and estrogen receptor (ER) in ovarian cells. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in ovarian cancer cells in the presence of estrogen or androgen. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during ovarian tumorigenesis

    The James Webb Space Telescope Mission: Optical Telescope Element Design, Development, and Performance

    Full text link
    The James Webb Space Telescope (JWST) is a large, infrared space telescope that has recently started its science program which will enable breakthroughs in astrophysics and planetary science. Notably, JWST will provide the very first observations of the earliest luminous objects in the Universe and start a new era of exoplanet atmospheric characterization. This transformative science is enabled by a 6.6 m telescope that is passively cooled with a 5-layer sunshield. The primary mirror is comprised of 18 controllable, low areal density hexagonal segments, that were aligned and phased relative to each other in orbit using innovative image-based wavefront sensing and control algorithms. This revolutionary telescope took more than two decades to develop with a widely distributed team across engineering disciplines. We present an overview of the telescope requirements, architecture, development, superb on-orbit performance, and lessons learned. JWST successfully demonstrates a segmented aperture space telescope and establishes a path to building even larger space telescopes.Comment: accepted by PASP for JWST Overview Special Issue; 34 pages, 25 figure

    Malaria in Africa: Vector Species' Niche Models and Relative Risk Maps

    Get PDF
    A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The “additive” model assumes no interaction; the “minimax” model assumes maximum relative risk due to any vector in a cell; and the “competitive exclusion” model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF
    corecore