454 research outputs found
Accumulation of high magnitude acceleration events predicts cerebrovascular reactivity changes in female high school soccer athletes
Mitigating the effects of repetitive exposure to head trauma has become a major concern for the general population, given the growing body of evidence that even asymptomatic exposure to head accelerations is linked with increased risk for negative life outcomes and that risk increases as exposure is prolonged over many years. Among women's sports, soccer currently exhibits the highest growth in participation and reports the largest number of mild traumatic brain injuries annually, making female soccer athletes a relevant population in assessing the effects of repetitive exposure to head trauma. Cerebrovascular biomarkers may be useful in assessing the effects of repetitive head trauma, as these are thought to contribute directly to neurocognitive symptoms associated with mild traumatic brain injury. Here we use fMRI paired with a hypercapnic breath hold task along with monitoring of head acceleration events, to assess the relationship between cerebrovascular brain changes and exposure to repetitive head trauma over a season of play in female high school soccer athletes. We identified longitudinal changes in cerebrovascular reactivity that were significantly associated with prolonged accumulation to high magnitude (> 75th percentile) head acceleration events. Findings argue for active monitoring of athletes during periods of exposure to head acceleration events, illustrate the importance of collecting baseline (i.e., pre-exposure) measurements, and suggest modeling as a means of guiding policy to mitigate the effects of repetitive head trauma
Advances in Understanding Carboxysome Assembly in \u3ci\u3eProchlorococcus\u3c/i\u3e and \u3ci\u3eSynechococcus\u3c/i\u3e Implicate CsoS2 as a Critical Component
The marine Synechococcus and Prochlorococcus are the numerically dominant cyanobacteria in the ocean and important in global carbon fixation. They have evolved a CO2-concentrating-mechanism, of which the central component is the carboxysome, a self-assembling proteinaceous organelle. Two types of carboxysome, α and β, encapsulating form IA and form IB d-ribulose-1,5-bisphosphate carboxylase/oxygenase, respectively, differ in gene organization and associated proteins. In contrast to the β-carboxysome, the assembly process of the α-carboxysome is enigmatic. Moreover, an absolutely conserved α-carboxysome protein, CsoS2, is of unknown function and has proven recalcitrant to crystallization. Here, we present studies on the CsoS2 protein in three model organisms and show that CsoS2 is vital for α-carboxysome biogenesis. The primary structure of CsoS2 appears tripartite, composed of an N-terminal, middle (M)-, and C-terminal region. Repetitive motifs can be identified in the N- and M-regions. Multiple lines of evidence suggest CsoS2 is highly flexible, possibly an intrinsically disordered protein. Based on our results from bioinformatic, biophysical, genetic and biochemical approaches, including peptide array scanning for protein-protein interactions, we propose a model for CsoS2 function and its spatial location in the α-carboxysome. Analogies between the pathway for β-carboxysome biogenesis and our model for α-carboxysome assembly are discussed
The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43
Pathological aggregates of phosphorylated TDP-43 characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), two devastating groups of neurodegenerative disease. Kinase hyperactivity may be a consistent feature of ALS and FTLD-TDP, as phosphorylated TDP-43 is not observed in the absence of neurodegeneration. By examining changes in TDP-43 phosphorylation state, we have identified kinases controlling TDP-43 phosphorylation in a C. elegans model of ALS. In this kinome-wide survey, we identified homologs of the tau tubulin kinases 1 and 2 (TTBK1 and TTBK2), which were also identified in a prior screen for kinase modifiers of TDP-43 behavioral phenotypes. Using refined methodology, we demonstrate TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro and promote TDP-43 phosphorylation in mammalian cultured cells. TTBK1/2 overexpression drives phosphorylation and relocalization of TDP-43 from the nucleus to cytoplasmic inclusions reminiscent of neuropathologic changes in disease states. Furthermore, protein levels of TTBK1 and TTBK2 are increased in frontal cortex of FTLD-TDP patients, and TTBK1 and TTBK2 co-localize with TDP-43 inclusions in ALS spinal cord. These kinases may represent attractive targets for therapeutic intervention for TDP-43 proteinopathies such as ALS and FTLD-TDP
Rasagiline Effects on Glucose Metabolism, Cognition, and Tau in Alzheimer’s Dementia
Background: A Phase II proof of concept (POC) randomized clinical trial was conducted to evaluate the effects of rasagiline, a monoamine oxidase B (MAO-B) inhibitor approved for Parkinson disease, in mild to moderate Alzheimer\u27s disease (AD). The primary objective was to determine if 1 mg of rasagiline daily for 24 weeks is associated with improved regional brain metabolism (fluorodeoxyglucose–positron emission tomography [FDG-PET]) compared to placebo. Secondary objectives included measurement of effects on tau PET and evaluation of directional consistency of clinical end points. Methods: This was a double-blind, parallel group, placebo-controlled, community-based, three-site trial of 50 participants randomized 1:1 to receive oral rasagiline or placebo (NCT02359552). FDG-PET was analyzed for the presence of an AD-like pattern as an inclusion criterion and as a longitudinal outcome using prespecified regions of interest and voxel-based analyses. Tau PET was evaluated at baseline and longitudinally. Clinical outcomes were analyzed using an intention-to-treat (ITT) model. Results: Fifty patients were randomized and 43 completed treatment. The study met its primary end point, demonstrating favorable change in FDG-PET differences in rasagiline versus placebo in middle frontal (P \u3c 0.025), anterior cingulate (P \u3c 0.041), and striatal (P \u3c 0.023) regions. Clinical measures showed benefit in quality of life (P \u3c 0.04). Digit Span, verbal fluency, and Neuropsychiatric Inventory (NPI) showed non-significant directional favoring of rasagiline; no effects were observed in Alzheimer\u27s Disease Assessment Scale-Cognitive Subscale (ADAS-cog) or activities of daily living. Rasagiline was generally well tolerated with low rates of adverse events and notably fewer neuropsychiatric symptoms in the active treatment group. Discussion: These outcomes illustrate the potential benefits of rasagiline on clinical and neuroimaging measures in patients with mild to moderate AD. Rasagiline appears to affect neuronal activity in frontostriatal pathways, with associated clinical benefit potential warranting a more fully powered trial. This study illustrated the potential benefit of therapeutic repurposing and an experimental medicine proof-of-concept design with biomarkers to characterize patient and detect treatment response
An analysis of the FIR/RADIO Continuum Correlation in the Small Magellanic Cloud
The local correlation between far-infrared (FIR) emission and radio-continuum
(RC) emission for the Small Magellanic Cloud (SMC) is investigated over scales
from 3 kpc to 0.01 kpc. Here, we report good FIR/RC correlation down to ~15 pc.
The reciprocal slope of the FIR/RC emission correlation (RC/FIR) in the SMC is
shown to be greatest in the most active star forming regions with a power law
slope of ~1.14 indicating that the RC emission increases faster than the FIR
emission. The slope of the other regions and the SMC are much flatter and in
the range of 0.63-0.85. The slopes tend to follow the thermal fractions of the
regions which range from 0.5 to 0.95. The thermal fraction of the RC emission
alone can provide the expected FIR/RC correlation. The results are consistent
with a common source for ultraviolet (UV) photons heating dust and Cosmic Ray
electrons (CRe-s) diffusing away from the star forming regions. Since the CRe-s
appear to escape the SMC so readily, the results here may not provide support
for coupling between the local gas density and the magnetic field intensity.Comment: 19 pages, 7 Figure
DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease
DJ-1 is a multifunctional protein that plays an important role in oxidative stress, cell death, and synucleinopathies, including Parkinson disease. Previous studies have demonstrated that total DJ-1 levels decrease in the cerebrospinal fluid, but do not change significantly in human plasma from patients with Parkinson disease when compared with controls. In this study, we measured total DJ-1 and its isoforms in whole blood of patients with Parkinson disease at various stages, Alzheimer disease, and healthy controls to identify potential peripheral biomarkers of PD. In an initial discovery study of 119 subjects, 7 DJ-1 isoforms were reliably detected, and blood levels of those with 4-hydroxy-2-nonenal modifications were discovered to be altered in late-stage Parkinson disease. This result was further confirmed in a validation study of another 114 participants, suggesting that, unlike total DJ-1 levels, post-translationally modified isoforms of DJ-1 from whole blood are candidate biomarkers of late-stage Parkinson disease
Long-term dementia prevalence in Parkinson Disease: Glass half-full?
Introduction: Dementia occurs in up to 80% of Parkinson’s disease (PD) patients long-term, but studies reporting such high rates were published years ago and had relatively small sample sizes and other limitations.
Objective: To determine long-term, cumulative dementia prevalence rates in PD using data from two large, ongoing, prospective observational studies.
Design: Analyses of data from the Parkinson’s Progression Markers Initiative (PPMI) and a longstanding PD research clinical core at the University of Pennsylvania (Penn).
Setting: PPMI is a multi-site international study, and Penn is a single site study at a tertiary movement disorders center.
Participants: PPMI enrolls de novo, untreated PD participants at baseline, and Penn enrolls a convenience cohort from a large clinical center.
Methods: For PPMI a cognitive battery and MDS-UPDRS Part I are administered annually, and the site investigator assigns a cognitive diagnosis annually. At Penn a comprehensive cognitive battery is administered either annually or biennially, and a cognitive diagnosis is made by expert consensus.
Main Outcomes: Kaplan-Meier (KM) survival curves were fit for time from PD diagnosis to stable dementia diagnosis for each cohort, using assigned cognitive diagnosis of dementia as the primary endpoint (for both PPMI and Penn), and MoCA score <21 and MDS-UPDRS Part I cognition score ≥3 as secondary endpoints (for PPMI). In addition, cumulative dementia prevalence by PD disease duration was tabulated for each study and endpoint.
Results: For the PPMI cohort, 417 PD participants were seen at baseline; estimated cumulative probability of dementia at year 10 disease duration were: 7% (site investigator diagnosis), 9% (MoCA) or 7.4% (MDS-UPDRS Part I cognition). For the Penn cohort, 389 PD participants were followed over time, with 184 participants (47% of cohort) eventually diagnosed with dementia. The KM curve for the Penn cohort had median time to dementia diagnosis =15 years (95% CI: 13-15) disease duration; the estimated cumulative probability of dementia was 27% at year 10, 50% at year 15, and 74% at year 20.
Conclusions and Relevance: Results from two large, prospective studies suggest that dementia in Parkinson disease occurs less frequently, or later in the disease course, than often-cited previous research studies have reported
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Neuropathological and Genetic Correlates of Survival and Dementia Onset in Synucleinopathies: A Retrospective Analysis
Background
Great heterogeneity exists in survival and the interval between onset of motor symptoms and dementia symptoms across synucleinopathies. We aimed to identify genetic and pathological markers that have the strongest association with these features of clinical heterogeneity in synucleinopathies.
Methods
In this retrospective study, we examined symptom onset, and genetic and neuropathological data from a cohort of patients with Lewy body disorders with autopsy-confirmed α synucleinopathy (as of Oct 1, 2015) who were previously included in other studies from five academic institutions in five cities in the USA. We used histopathology techniques and markers to assess the burden of tau neurofibrillary tangles, neuritic plaques, α-synuclein inclusions, and other pathological changes in cortical regions. These samples were graded on an ordinal scale and genotyped for variants associated with synucleinopathies. We assessed the interval from onset of motor symptoms to onset of dementia, and overall survival in groups with varying levels of comorbid Alzheimer\u27s disease pathology according to US National Institute on Aging–Alzheimer\u27s Association neuropathological criteria, and used multivariate regression to control for age at death and sex.
Findings
On the basis of data from 213 patients who had been followed up to autopsy and met inclusion criteria of Lewy body disorder with autopsy-confirmed α synucleinopathy, we identified 49 (23%) patients with no Alzheimer\u27s disease neuropathology, 56 (26%) with low-level Alzheimer\u27s disease neuropathology, 45 (21%) with intermediate-level Alzheimer\u27s disease neuropathology, and 63 (30%) with high-level Alzheimer\u27s disease neuropathology. As levels of Alzheimer\u27s disease neuropathology increased, cerebral α-synuclein scores were higher, and the interval between onset of motor and dementia symptoms and disease duration was shorter (p \u3c 0·0001 for all comparisons). Multivariate regression showed independent negative associations of cerebral tau neurofibrillary tangles score with the interval between onset of motor and dementia symptoms (β −4·0, 95% CI −5·5 to −2·6; p \u3c 0·0001; R 2 0·22, p \u3c 0·0001) and with survival (–2·0, −3·2 to −0·8; 0·003; 0·15, \u3c 0·0001) in models that included age at death, sex, cerebral neuritic plaque scores, cerebral α-synuclein scores, presence of cerebrovascular disease, MAPT haplotype, and APOE genotype as covariates.
Interpretation
Alzheimer\u27s disease neuropathology is common in synucleinopathies and confers a worse prognosis for each increasing level of neuropathological change. Cerebral neurofibrillary tangles burden, in addition to α-synuclein pathology and amyloid plaque pathology, are the strongest pathological predictors of a shorter interval between onset of motor and dementia symptoms and survival. Diagnostic criteria based on reliable biomarkers for Alzheimer\u27s disease neuropathology in synucleinopathies should help to identify the most appropriate patients for clinical trials of emerging therapies targeting tau, amyloid-β or α synuclein, and to stratify them by level of Alzheimer\u27s disease neuropathology
- …