84 research outputs found

    Bioanalytical Tools in Water Quality Assessment

    Get PDF
    The first edition of Bioanalytical Tools in Water Quality Assessment was released in 2012. The field has exploded since and the second edition updates and reviews the application of bioanalytical tools for water quality assessment including surveillance monitoring. The book focuses on applications to water quality assessment ranging from wastewater to drinking water, including recycled water, as well as treatment processes and advanced water treatment. Emerging applications for other environmental matrices are also included. Bioanalytical Tools in Water Quality Assessment, Second Edition, not only demonstrates applications but also fills in the background knowledge in toxicology/ecotoxicology needed to appreciate these applications. Each chapter summarises fundamental material in a targeted way so that information can be applied to better understand the use of bioanalytical tools in water quality assessment. The book can be used by lecturers teaching academic and professional courses and also by risk assessors, regulators, experts, consultants, researchers and managers working in the water sector. It can also be a reference manual for environmental engineers, analytical chemists and toxicologists. Detailed descriptions of dose-response assessment, data reporting, mixture modelling and quality assurance/quality control are complemented by a series of online resources and tools to apply some of the principles and data methods explained in this book. This supplementary information is available at www.ufz.de/bioanalytical-tools

    Applying mixture toxicity modelling to predict bacterial bioluminescence inhibition by non-specifically acting pharmaceuticals and specifically acting antibiotics

    Get PDF
    Pharmaceuticals and antibiotics co-occur in the aquatic environment but mixture studies to date have mainly focused on pharmaceuticals alone or antibiotics alone, although differences in mode of action may lead to different effects in mixtures. In this study we used the Bacterial Luminescence Toxicity Screen (BLT-Screen) after acute (0.5 h) and chronic (16 h) exposure to evaluate how non-specifically acting pharmaceuticals and specifically acting antibiotics act together in mixtures. Three models were applied to predict mixture toxicity including concentration addition, independent action and the two-step prediction (TSP) model, which groups similarly acting chemicals together using concentration addition, followed by independent action to combine the two groups. All non-antibiotic pharmaceuticals had similar EC50 values at both 0.5 and 16 h, indicating together with a QSAR (Quantitative Structure-Activity Relationship) analysis that they act as baseline toxicants. In contrast, the antibiotics’ EC50 values decreased by up to three orders of magnitude after 16 h, which can be explained by their specific effect on bacteria. Equipotent mixtures of non-antibiotic pharmaceuticals only, antibiotics only and both non-antibiotic pharmaceuticals and antibiotics were prepared based on the single chemical results. The mixture toxicity models were all in close agreement with the experimental results, with predicted EC50 values within a factor of two of the experimental results. This suggests that concentration addition can be applied to bacterial assays to model the mixture effects of environmental samples containing both specifically and non-specifically acting chemicals

    Enhancement of trace organic contaminant degradation by crude enzyme extract from Trametes versicolor culture: Effect of mediator type and concentration

    Get PDF
    The performance of two redox mediating compounds, namely 1-hydroxybenzotriazole (HBT) and syringaldehyde (SA), was compared in terms of enhancement of enzymatic degradation of a diverse set of 14 phenolic and 16 non-phenolic trace organic contaminants (TrOCs) and the toxicity of the treated media. Extracellular enzyme extract (predominantly containing laccase) from Trametes versicolor culture achieved efficient degradation (70-95%) of nine phenolic and one non-phenolic TrOCs. Mediator dosing extended the spectrum of efficiently degraded TrOCs to 13 phenolic and three non-phenolic compounds, with moderate improvements in removal of a few other non-phenolic compounds. TrOC removal efficiency improved significantly as the HBT dose was increased from 0.1 to 0.5 mM, while SA achieved similar removal over dosage range of 0.1-1 mM. A particular concern was the toxicity of the treated media (1200-2200 times that of the control) for all SA dosages applied. Overall, HBT at a concentration of 0.5 mM achieved the best removal without raising concern regarding toxicity of the treated media. The results are discussed in the light of the redox potential of the enzyme-mediator cocktail, the balance between the stability and reactivity of the radicals generated and their cytotoxic effects

    Degradation of diclofenac, trimethoprim, carbamazepine, and sulfamethoxazole by laccase from Trametes versicolor: Transformation products and toxicity of treated effluent

    Get PDF
    The degradation of diclofenac (DCF), trimethoprim (TMP), carbamazepine (CBZ), and sulfamethoxazole (SMX) by laccase from Trametes versicolor was investigated. Experiments were conducted using the pharmaceuticals individually, or as a mixture at different initial concentrations (1.25 and 5 mg/L each). The initial enzymatic activity of all the treated samples was around 430-460 U (DMP) /L. The removal of the four selected pharmaceuticals tested individually was more effective than when tested in mixtures under the same conditions. For example, 5 mg DCF/L was completely removed to below its detection limit (1 µg/L) within 8 h in the individual experiment vs. after 24 h when dosed as a mixture with the other pharmaceuticals. A similar trend was visible with other three pharmaceuticals, with 95 vs. 39%, 82 vs. 34% and 56 vs. 49% removal after 48 h with 5 mg/L of TMP, CBZ, and SMX tested individually or as mixtures, respectively. In addition, at the lower initial concentration (1.25 mg/L each), the removal efficiency of TMP, CBZ, and SMX in mixtures was lower than that obtained at the higher initial concentrations (5 mg/L each) during both the individual and combined treatments. Four enzymatic transformation products (TPs) were identified during the individual treatments of DCF and CBZ by T. versicolor. For TMP and SMX, no major TPs were observed under the experimental conditions used. The toxicity of the solution before and after enzymatic treatment of each pharmaceutical was also assessed and all treated effluent samples were verified to be non-toxic

    Histopathology, vitellogenin and chemical body burden in mosquitofish (Gambusia holbrooki) sampled from six river sites receiving a gradient of stressors

    Get PDF
    There are over 40,000 chemical compounds registered for use in Australia, and only a handful are monitored in the aquatic receiving environments. Their effects on fish species in Australia are largely unknown. Mosquitofish (Gambusia holbrooki) were sampled from six river sites in Southeast Queensland identified as at risk from a range of pollutants. The sites selected were downstream of a wastewater treatment plant discharge, a landfill, two agricultural areas, and two sites in undeveloped reaches within or downstream of protected lands (national parks). Vitellogenin analysis, histopathology of liver, kidney and gonads, morphology of the gonopodium, and chemical body burden were measured to characterize fish health. Concentrations of trace organic contaminants (TrOCs) in water were analyzed by in vitro bioassays and chemical analysis. Estrogenic, anti-estrogenic, anti-androgenic, progestagenic and anti-progestagenic activities and TrOCs were detected in multiple water samples. Several active pharmaceutical ingredients (APIs), industrial compounds, pesticides and other endocrine active compounds were detected in fish carcasses at all sites, ranging from < 4–4700 ng/g wet weight, including the two undeveloped sites. While vitellogenin protein was slightly increased in fish from two of the six sites, the presence of micropollutants did not cause overt sexual endocrine disruption in mosquitofish (i.e., no abnormal gonads or gonopodia). A correlation between lipid accumulation in the liver with total body burden warrants further investigation to determine if exposure to low concentrations of TrOCs can affect fish health and increase stress on organs such as the liver and kidneys via other mechanisms, including disruption of non-sexual endocrine axes involved in lipid regulation and metabolism

    Exploring contaminants as a disruptor of temperature-dependent sex determination in sea turtle hatchlings

    Get PDF
    Sea turtle nesting beaches are experiencing increased sand temperatures as climate change progresses. In one major green turtle (Chelonia mydas) nesting beach in the northern Great Barrier Reef, over 99 percent of hatchlings are female. The effects of contaminants on sea turtle hatchling sex determination are not often explored. Liver samples were collected from green turtle hatchlings that were sacrificed for histological sex determination in a parallel study on the effects of sand cooling on sex ratios, and analysed for trace elements via acid digestion and organic contaminants via in vitro cytotoxicity bioassays. Chromium, antimony, barium, and cadmium have previously been demonstrated to be estrogenic, and concentrations of these elements were used to calculate three estrogenic indexes for each clutch: predicted relative estrogenic potency (PEEQA), the sum of percent trace elements above the median of all samples (TEOM), and the sum of percent estrogenic elements above the median of all samples (EstroEOM). Excluding an outlier clutch, cadmium, antimony, and EstroEOM had significant positive relationships with sex ratio deviation. Mean clutch cobalt, lead, antimony and barium, also had a significant positive relationship with clutch sex ratio. There was no relationship between in vitro cytotoxicity of liver extracts and sex ratio, however, 9% of hatchlings had organic contaminants high enough to suggest potential cellular damage. Contaminant effects on sex determination are likely to be caused by a mixture of contaminant interactions as well as temperature. Many trace elements detected in this study have also been linked to negative health effects on hatchlings in previous studies. Considering the risks of feminization due to climate change and potential contaminant effects on hatchling health and sex determination, future studies exploring contaminant effects on sea turtle hatchling sex determination are recommended

    Towards Sustainable Environmental Quality : Priority Research Questions for the Australasian Region of Oceania

    Get PDF
    Environmental challenges persist across the world, including the Australasian region of Oceania, where biodiversity hotspots and unique ecosystems such as the Great Barrier Reef are common. These systems are routinely affected by multiple stressors from anthropogenic activities, and increasingly influenced by global megatrends (e.g., the food-energy-water nexus, demographic transitions to cities) and climate change. Here we report priority research questions from the Global Horizon Scanning Project, which aimed to identify, prioritize, and advance environmental quality research needs from an Australasian perspective, within a global context. We employed a transparent and inclusive process of soliciting key questions from Australasian members of the Society of Environmental Toxicology and Chemistry. Following submission of 78 questions, 20 priority research questions were identified during an expert workshop in Nelson, New Zealand. These research questions covered a range of issues of global relevance, including research needed to more closely integrate ecotoxicology and ecology for the protection of ecosystems, increase flexibility for prioritizing chemical substances currently in commerce, understand the impacts of complex mixtures and multiple stressors, and define environmental quality and ecosystem integrity of temporary waters. Some questions have specific relevance to Australasia, particularly the uncertainties associated with using toxicity data from exotic species to protect unique indigenous species. Several related priority questions deal with the theme of how widely international ecotoxicological data and databases can be applied to regional ecosystems. Other timely questions, which focus on improving predictive chemistry and toxicology tools and techniques, will be important to answer several of the priority questions identified here. Another important question raised was how to protect local cultural and social values and maintain indigenous engagement during problem formulation and identification of ecosystem protection goals. Addressing these questions will be challenging, but doing so promises to advance environmental sustainability in Oceania and globally

    Bioanalytical tools in water quality assessment

    No full text

    Estrogenic and androgenic potential of municipal sewage in Australia and New Zealand

    Get PDF
    Studies in Europe, Japan, and North America have reported that wild fish exposed to treated sewage effluents can exhibit significant physiological and reproductive abnormalities consistent with exposure to hormonally active chemicals. The main objective of this research project was to examine the estrogenic and androgenic activity in treated sewage to determine the risk associated with treated sewage discharges in Australia and New Zealand. Several bioassays, including a sheep estrogen receptor and a rainbow trout androgen receptor binding assay, were set up and validated with model compounds. The assays were then used to measure the estrogenic and androgenic activity in sewage samples from 15 municipal sewage treatment plants (STP) utilizing a variety of treatment technologies. Raw sewage samples contained high levels of both estrogenic and androgenic activity, up to 185 ng/L estradiol equivalents (EEq) and up to 9330 ng/L testosterone equivalents (TEq), respectively. Secondary treatment processes such as activated sludge had the greatest impact on removal of biological activity from the wastewater. The estrogenic and androgenic activity in final treated effluents were <1 to 4.2 ng/L EEq and <6.5 to 736 ng/L TEq, respectively. Based on lowest observable effective concentrations reported in the literature, these levels are unlikely to induce biological effects in exposed fish in the short term. To examine potential long-term effects, resident mosquitofish chronically exposed to undiluted treated sewage were sampled. Several morphological biomarkers indicative of endocrine disruption were measured and compared with mosquitofish captured at a reference site. Mosquitofish captured in a constructed wetland for tertiary treatment of secondary treated sewage exhibited morphological differences such as elongated anal fins consistent with exposure to androgenic chemicals, although this effect was not measurable in fish collected at sites further downstream or at any of the other sites. Based on these results, it is unlikely that mosquitofish populations would be significantly affected by exposure to final treated sewage. A reverse transcription real-time polymerase chain reaction (RT-PCR) method to measure the production of a female-specific protein (vitellogenin) mRNA in adult male mosquitofish was developed, and this could be used as a rapid test to detect early changes in individuals exposed to estrogenic activity
    • …
    corecore