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36 Abstract

37 Pharmaceuticals and antibiotics co-occur in the aquatic environment but mixture studies to date 

38 have mainly focused on pharmaceuticals alone or antibiotics alone, although differences in mode of 

39 action may lead to different effects in mixtures. In this study we used the Bacterial Luminescence 

40 Toxicity Screen (BLT-Screen) after acute (0.5 h) and chronic (16 h) exposure to evaluate how non-

41 specifically acting pharmaceuticals and specifically acting antibiotics act together in mixtures. 

42 Three models were applied to predict mixture toxicity including concentration addition, 

43 independent action and the two-step prediction (TSP) model, which groups similarly acting 

44 chemicals together using concentration addition, followed by independent action to combine the 

45 two groups. All non-antibiotic pharmaceuticals had similar EC50 values at both 0.5 and 16 h, 

46 indicating together with a QSAR (Quantitative Structure-Activity Relationship) analysis that they 

47 act as baseline toxicants. In contrast, the antibiotics’ EC50 values decreased by up to three orders of 

48 magnitude after 16 h, which can be explained by their specific effect on bacteria. Equipotent 

49 mixtures of non-antibiotic pharmaceuticals only, antibiotics only and both non-antibiotic 

50 pharmaceuticals and antibiotics were prepared based on the single chemical results. The mixture 

51 toxicity models were all in close agreement with the experimental results, with predicted EC50 

52 values within a factor of two of the experimental results. This suggests that concentration addition 

53 can be applied to bacterial assays to model the mixture effects of environmental samples containing 

54 both specifically and non-specifically acting chemicals.

55

56 Keywords: antibiotics; bacterial toxicity; concentration addition; independent action; 

57 pharmaceuticals

58
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60 1. Introduction

61 Bacterial assays based on bioluminescence inhibition are widely applied tools to evaluate the effect 

62 of individual chemicals, chemical mixtures and environmental samples (Altenburger et al., 2000; 

63 Katsoyiannis and Samara, 2007; Escher et al., 2008; Tang et al., 2013). The advantages of such 

64 assays include ease of use, sensitivity and speed, with sample exposure times typically between 15 

65 to 30 minutes (Parvez et al., 2006). Further, Kaiser (1998) found a good correlation between a range 

66 of aquatic in vivo endpoints and observed effect in marine bacteria Aliivibrio fischeri, more 

67 commonly referred to as the Microtox assay. While acute bacterial assays are suitable for non-

68 specifically acting compounds, their applicability to specifically acting chemicals, such as 

69 antibiotics, is questionable, with several studies finding low or no effect in the Microtox assay after 

70 exposure to different classes of antibiotics (Isidori et al., 2005; van der Grinten et al., 2010). 

71 Antibiotics can have specific effects on different bacterial species, including inhibition of protein 

72 synthesis and inhibition of DNA synthesis (Kohanski et al., 2010), thus the typical short exposure 

73 times are not sufficient to account for the specific effects of antibiotics. Consequently, previous 

74 studies have shown that antibiotic effects in bacterial assays can increase by several orders of 

75 magnitude with longer exposure periods (Thomulka et al., 1993; Backhaus et al., 1997; Froehner et 

76 al., 2000; Zou et al., 2012). 

77

78 While there are increasing concerns about the presence of antibiotics in the aquatic environment 

79 (Kummerer, 2009), environmental waters can contain a wide range of chemicals, including 

80 pharmaceuticals, pesticides and industrial compounds (Loos et al., 2013; Neale et al., 2015). 

81 Consequently, it is important to consider the potential mixture effects that can occur between 

82 chemicals. Mixtures that contain chemicals that share a common mode of action in a particular 

83 organism can be predicted using the concentration addition model, while chemicals that act 

84 according to different modes of action can be described by independent action (Backhaus and Faust, 

85 2012). While environmental samples typically contain a large number of chemicals with diverse 

86 modes of action, the concentration addition model is considered to be suitable for hazard 

87 assessment as it provides a worst-case prediction of mixture toxicity in most cases (Backhaus et al., 

88 2000). An alternative approach is the two-step prediction (TSP) model proposed by Junghans 

89 (2004), which groups similarly acting compounds together using the concentration addition model 

90 and then applies independent action to combine the predicted effects of the individual groups. This 

91 has previously been applied to successfully predict mixture toxicity in Daphnia magna (Ra et al., 

92 2006) and algal assays (Tang and Escher, 2014).

93



ACCEPTED MANUSCRIPT

94 In this study the Bacterial Luminescence Toxicity Screen (BLT-Screen) using bioluminescent 

95 bacteria Photobacterium leiognathi was applied to single compounds and mixtures containing both 

96 non-specifically acting pharmaceuticals, referred to as non-antibiotic pharmaceuticals, and 

97 specifically acting antibiotics after both acute and chronic exposure. Backhaus et al. (1997) showed 

98 that the ratio of acute to chronic effects in bioluminescent bacteria can provide information about 

99 the mode of action of studied chemicals, with an increased acute to chronic ratio observed for 

100 specifically acting chemicals. In the current study 0.5 h was used for acute exposure as this is the 

101 typical sample exposure period in the assay (van de Merwe and Leusch, 2015), while 16 h was used 

102 for chronic exposure. The studied compounds have all been detected previously in wastewater and 

103 surface water in the ng/L to µg/L concentration range (Kolpin et al., 2002; Watkinson et al., 2009; 

104 Hughes et al., 2013; Loos et al., 2013). Effect concentrations inhibiting 50% of the bioluminescence 

105 output (EC50) were determined at both 0.5 and 16 h for individual compounds, with equipotent 

106 mixtures of non-antibiotic pharmaceuticals only, antibiotics only and both non-antibiotic 

107 pharmaceuticals and antibiotics prepared based on the ratio of the experimental EC50 values. The 

108 observed effects were compared with predicted effects based on the concentration addition, 

109 independent action and TSP models.

110

111 2. Materials and methods

112 2.1 Chemicals

113 Five non-antibiotic pharmaceuticals, carbamazepine, diclofenac, fluoxetine, gemfibrozil and 

114 naproxen, and five antibiotics, doxycycline, monensin, sulfamethizole, sulfamethoxazole and 

115 tetracycline, were selected for this study. Properties of the studied chemicals are provided in Table 

116 1. Pentachlorophenol (PCP) was used as the positive reference compound for the BLT-Screen. PCP 

117 is an weak acid uncoupler and exhibits a specific effect in the assay (Schultz and Cronin, 1997). 

118 Individual chemical stocks and chemical mixtures were prepared in HPLC grade methanol. All 

119 chemicals were purchased from Sigma Aldrich (Castle Hill, Australia) or Novachem Pty Ltd 

120 (Collingwood, Australia). 

121

122 2.2 Bioanalysis

123 The BLT-Screen was run according to van de Merwe and Leusch (2015), with some modifications. 

124 Briefly, the chemical stocks, along with positive control PCP and solvent control methanol, were 

125 added to white 96 well plates and serially diluted in phosphate buffer (pH 4) using either a 1:3 or 

126 1:5 dilution series, with a final volume of 200 µL. The final concentration of methanol in the assay 

127 did not exceed 0.8% (v/v). While many bacterial assays are conducted at pH 7, the BLT-Screen was 

128 run at pH 4 to increase assay sensitivity to organic contaminants (van de Merwe and Leusch, 2015). 
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129 Following the serial dilution, a cryopreserved Photobacterium leiognathi stock was thawed and 

130 diluted 1:6 in growth medium, with 5 µL of growth medium added to each well. Luminescence was 

131 measured at 0.5 and 16 h using a Fluostar Omega plate reader (BMG Labtech, Ortenberg, 

132 Germany). Between readings, the plates were stored at 22°C and gently shaken at 90 RPM. Percent 

133 luminescence inhibition was calculated using Equation 1 based on sample luminescence, provided 

134 in relative light units (RLU), (RLUsample) and the average luminescence of the solvent control 

135 (RLUcontrol). All samples were run in duplicate on the same plate, with each sample run 

136 independently two to three times. RLUcontrol was reasonably stable between experiments (coefficient 

137 of variance <20%), with RLUcontrol typically decreasing by approximately 35% from 0.5 to 16 h. 

138 The effect concentration causing 50% effect (EC50) at 0.5 and 16 h was calculated using log-logistic 

139 concentration-effect curves (Equation 2), where ECi is the concentration at a defined percent effect 

140 y. The slope was fitted from the experimental data.

141

142 % Inhibition = (1 -
RLUsample

RLUcontrol
) ∙ 100%

143 (1)

144 % effect (y) =
1

1 + 10
slope ∙ (log EC50 - logECi)

145 (2)

146 2.3 Mixture toxicity modelling

147 Using the experimental EC50 values for the individual chemicals, equipotent mixtures were 

148 prepared for non-antibiotic pharmaceuticals only (5 components), antibiotics only (5 components) 

149 and all chemicals (10 components) for both 0.5 and 16 h time points. All components contribute 

150 equally to the mixture effect in equipotent mixtures and the fraction of each chemical included in 

151 the mixtures is provided in Table 2. The experimental results were compared with concentration 

152 addition, independent action and TSP mixture toxicity predictions. EC50 based on the concentration 

153 addition predictions (EC50,CA) was calculated using Equation 3, where pi is the fraction of 

154 component i (i = 1 to n) in the mixture and ECy,i is the ECy of component i at any effect level y. As 

155 standard error is symmetrical on a log scale, Equation 3 was expanded to Equation 4 to calculate log 

156 ECy,CA. The effect predicted based on independent action (EIA) was determined using Equation 5, 

157 where Ei is the effect of component i in the mixture. 

158
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159 ECy,CA =
1

n

∑
i = 1

pi

ECy,i

160 (3)

161 logECy,CA = log(( p1

ECy,1
) + ( p2

ECy,2
) + ( p3

ECy,3
) + …)

162 (4)

163 EIA = 1 -
n

∏
i = 1

(1 - Ei)

164 (5)

165

166 The variability associated with the mixture toxicity model predictions was estimated using error 

167 propagation. For concentration addition, Equation 2 was rearranged to give Equation 6, with the 

168 error associated with log ECy,i, σlog ECy,i, calculated for each component i using Equation 7. 

169

170 logECy,i = logEC50,i -
1

slope ∙ log⁡(1 - y
y )

171 (6) σlogECy,i = σlogEC50,i
2 + (log

1 - y
y )2 ∙ (σslope

slope2)4

172  (7)

173

174 The error associated with the concentration addition prediction, σlogECy,CA, was estimated using 

175 Equation 8, with  calculated using Equation 9.
σlogECy,CA

σlogECy,i

176 σlogECy,CA =
n

∑
i = 1

σlogECy,CA

σlogECy,i

2 ∙ σlogECy,i
2

177 (8)

178
σlogECy,CA

σlogECy,i
=

p1 ∙ 10
- log ECy,1

p1 ∙ 10
- log ECy,1 + p2 ∙ 10

- log ECy,2 + p3 ∙ 10
- log ECy,3 + …

179 (9)

180
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181 For independent action, the error associated with effecti, σeffecti, was calculated for each component 

182 i using Equation 10. The required parameters for Equation 10 were calculated using Equations 11 to 

183 13, where C is the concentration and ln is the natural logarithm. 
184

185

186 σEi = ( σEi

σslopei
)2 ∙ σslopei

2 + ( σEi

σlogEC50,i
)2 ∙ σlogEC50,i

2 + ( σEi

σlogC)2 ∙ σlogC2

187 (10)

188
σEi

σslopei
=

10
slope ∙ (logEC50,i - logC)

∙ (logEC50,i - logC) ∙ ln10

(1 + 10
slope ∙ (logEC50,i - logC))2

189 (11)

190

191
σEi

σlogEC50,i
=

10
slope ∙ (logEC50,i - logC)

∙ slope ∙ ln10

(1 + 10
slope ∙ (logEC50,i - logC))2

192  (12)

193
σEi

σlogC =
10

slope ∙ (logEC50,i - logC)
∙ slope ∙ ln10

(1 + 10
slope ∙ (logEC50,i - logC))2

194  (13)

195

196 The error associated with the independent action predicted effect, σEIA, was calculated with 

197 Equation 14.

198

199 σEIA = ((1 - Ei,2) ∙ (1 - Ei,3) ∙ σEi,1)2 + ((1 - Ei,1) ∙ (1 - Ei,3) ∙ σEi,2)2 + ((1 - Ei,1) ∙ (1 - Ei,2) ∙ σEi,3)2

200 (14)

201

202 The CA prediction was calculated for a range of effect levels y to draw a complete concentration-

203 effect curve for CA, while the IA prediction was calculated for a range of concentrations C to draw 

204 a complete concentration-effect curve for IA. For the ten-component mixtures, the TSP model was 

205 also applied by predicting concentration addition for the non-antibiotic pharmaceutical group and 

206 antibiotics group separately and then combining the two groups together using the independent 

207 action model. 
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208

209 3. Results and discussion

210 3.1 Individual chemicals

211 The EC50 values at 0.5 and 16 h are provided for all individual chemicals in Table 3, with the full 

212 concentration-effect curves shown in Figure 1. There was little change in EC50 over time for the 

213 studied non-antibiotic pharmaceuticals, with the ratio of EC50 at 0.5 h to EC50 at 16 h ranging from 

214 1.0 to 4.4 (Table 3). This is also shown in Figure 2, where the difference in log EC50 for all non-

215 antibiotic pharmaceuticals at 0.5 and 16 h falls within 0.5 log units. As the effect remained 

216 relatively constant over time, this indicates that the studied non-antibiotic pharmaceuticals were 

217 baseline toxicants and did not exhibit a specific effect on Photobacterium leiognathi. In contrast, 

218 the effect of the antibiotics increased with time, with the EC50 values decreasing by up to three 

219 orders of magnitude (Table 3). The ratio of EC50 at 0.5 h to EC50 at 16 h ranged from 7.2 to 995. 

220 The two most potent antibiotics, doxycycline and tetracycline, inhibit protein synthesis, and 

221 previous studies also found that this class of antibiotics were among the most toxic to Aliivibrio 

222 fischeri (Backhaus and Grimme, 1999). In contrast, the sulphonamides, sulfamethoxazole and 

223 sulfamethizole, which are inhibitors of folic acid, had the lowest decrease in EC50 values over time. 

224 This has been observed previously (Zou et al., 2012) and it has been hypothesised that the presence 

225 of bacteria growth media components, such as yeast extract, may be a source of folic acid for the 

226 bacteria (Backhaus and Grimme, 1999). Yeast extract is composed of autolyzed Saccharomyces 

227 cerevisiae cells, with Saccharomyces cerevisiae strains previously shown to contain total folate 

228 concentrations ranging from 4 to 14.5 mg per 100 g of dried yeast extract (Hjortmo et al., 2005). 

229 The growth media contained 3 g/L of yeast extract (van de Merwe and Leusch, 2015), with 5 µL of 

230 growth media added to 200 µL sample volume in the BLT-Screen giving a final volume of 205 µL, 

231 thus the potential concentration of folate in the assay was 2.9 to 10.6 µg/L.

232

233 The results were compared with the baseline toxicity Quantitative Structure-Activity Relationship 

234 (QSAR) developed by Tang et al. (2013) for the Microtox assay based on 0.5 h exposure. The 

235 QSAR was developed based on the liposome-water partition coefficient (Klipw) of neutral chemicals, 

236 but was shown to be applicable to ionisable organic chemicals when Klipw was replaced with the 

237 speciation-corrected distribution ratio (Dlipw) (Tang et al., 2013). While octanol-water partition 

238 coefficients (Kow) are often used for QSARs, previous studies have shown that liposome-water 

239 partition coefficients (Klipw) are a suitable descriptor for both polar and nonpolar chemicals (Vaes et 

240 al., 1997) and have been successfully applied to predict toxicity using QSAR models (Tang et al., 

241 2013; Klüver et al., 2016). As many of the studied chemicals are charged at pH 4, Dlipw was used in 

242 the QSAR to account for speciation (Table 1). Therefore, while the QSAR was developed based on 
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243 the experimental Klipw of neutral compounds, Dlipw could be applied to correct for speciation at pH 

244 4. Figure 3 indicates that the majority of non-antibiotic pharmaceuticals fit well with the QSAR 

245 predictions based on the Microtox assay, with the ratio of the QSAR predicted EC50 to the 

246 experimental EC50, also known as the toxic ratio, less than 10, suggesting that the non-antibiotic 

247 pharmaceuticals are baseline toxicants (Tang et al., 2013). The exception was naproxen, which had 

248 a toxic ratio from 70 (0.5 h) to 250 (16 h). While a toxic ratio above 10 usually indicates that a 

249 compound has a specific mode of action, the acute to chronic ratio for naproxen was 3.6, which 

250 suggests that it is having a non-specific effect on Photobacterium leiognathi. Thus, the dissimilarity 

251 may be related to differences in sensitivity of the applied bacterial strain (Aliivibrio fischeri 

252 compared to Photobacterium leiognathi). van de Merwe and Leusch (2015) also found a similar 

253 EC50 value for naproxen in the BLT-Screen (Figure 3). In contrast, all antibiotics at both 0.5 and 16 

254 h deviated significantly from the baseline toxicity QSAR, which was also observed by Tang et al. 

255 (2013). 

256

257 3.2 Mixture toxicity modelling

258 Experimental EC50 values for the separate equipotent non-antibiotic pharmaceutical and antibiotics 

259 mixtures were compared with EC50 values predicted using concentration addition and independent 

260 action (Table 4). Concentration addition was more conservative than independent action for the 

261 non-antibiotic pharmaceutical-only mixtures at both 0.5 and 16 h, with the concentration addition 

262 predicted concentration-effect curves agreeing well with the experimental results (Figure 4A-B). 

263 However, the independent action EC50 predictions were only a factor of two higher than the 

264 experimental EC50 values. For the antibiotics, independent action yielded a lower EC50 at 0.5 h 

265 (Figure 4C), while both concentration addition and independent action provided close agreement 

266 with the experimental EC50 value at 16 h (Figure 4D). The suitability of the independent action 

267 model at 16 h may be due to the fact that the different antibiotics have different modes of action on 

268 bacteria, such protein synthesis inhibition and folic acid inhibition, which is not apparent after only 

269 0.5 h exposure (Froehner et al., 2000). Independent action was also shown to be the most applicable 

270 model to predict mixture toxicity of dissimilarly acting compounds using Aliivibrio fischeri 

271 (Backhaus et al., 2000). However, concentration addition was overall the most suitable model for 

272 the five-component mixtures, with predictions within a factor of 1.1 to 1.4 of the experimental 

273 results, meaning it is suitable for use in the TSP model.

274

275 The effect of the ten-component mixture containing both non-antibiotic pharmaceuticals and 

276 antibiotics was predicted using concentration addition, independent action and the TSP model 

277 (Table 4, Figure 4E-F). For the TSP model, the concentration addition predictions of the five-
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278 component mixtures of either non-antibiotic pharmaceuticals or antibiotics were integrated using 

279 independent action, with pi representing the fraction of each group in the ten-component mixture. 

280 This was possible as the ratio of similarly acting components within each group remained the same 

281 in both the five and ten-component mixtures. All three models gave a good agreement with the 

282 experimental data, with all predictions within a factor of two of the experimental EC50 values. The 

283 TSP model tended to fall between the concentration addition and independent action predictions, 

284 indicating that the TSP model is an appropriate model to predict the effect of specific and non-

285 specific chemicals in bioluminescent bacterial assays. However, given the similarity of all 

286 predictions, this still supports the application of concentration addition as a suitable model for 

287 compounds whose mode of action is unknown, given it tends to be more conservative, particularly 

288 at the chronic 16 h exposure. This suggests that the bioanalytical equivalent approach, which 

289 assumes that chemicals act according to concentration addition (Neale et al., 2015), can be applied 

290 to predict the mixture toxicity of environmental samples containing both antibiotics and non-

291 specifically acting chemicals in bacterial assays. 

292

293 4. Conclusions

294 In this study the effect of two groups of commonly detected water pollutants, pharmaceuticals and 

295 antibiotics, were assessed in the BLT-Screen after acute (0.5 h) and chronic (16 h) exposure 

296 periods, with equipotent mixtures prepared. Despite using a different bacterial species, the EC50 

297 values for most non-antibiotic pharmaceuticals fit well with previously published baseline toxicity 

298 QSAR predictions; however, the QSAR was clearly unsuitable for specifically acting antibiotics, 

299 with the observed effect two to seven orders of magnitude higher than predicted. Thus, while the 

300 bioluminescence inhibition of bacteria is widely applied to test the baseline toxicity of chemical and 

301 environmental mixtures (Altenburger et al., 2000; Tang et al., 2013; Di Nica et al., 2016; Vethaak et 

302 al., 2016), antibiotics appear to be outliers. The applied mixture toxicity models of concentration 

303 addition, independent action and TSP all gave a good agreement with the experimental data. While 

304 independent action and TSP may have given closer predictions, concentration addition is still 

305 recommended for mixture toxicity modelling of dissimilarly acting compounds. Therefore, it is still 

306 possible to apply this assay to environmental mixtures, such as water samples, even if they contain 

307 substantial fractions of antibiotics because the overall mixture effect can be satisfactorily modelled 

308 by concentration addition. 

309
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421 Table 1: Selected properties of the studied non-antibiotic pharmaceuticals and antibiotics.

Chemical CAS No

Molecular 

weight 

(g/mol)

Methanol

stock 

solution (M)

Log Kow
a Log Klipw

b
Log Dlipw

(pH 4)

Carbamazepine 298-46-4 236.27 0.10 2.45 2.57 2.57c

Diclofenac 15307-86-5 318.13 0.10 4.51 4.67 4.45d

Fluoxetine 56296-78-7 345.79 0.05 4.05 4.20 3.84e*

Gemfibrozil 25812-30-0 250.33 0.10 4.77 4.94 4.83c

Naproxen 22204-53-1 230.26 0.01 3.18 3.31 3.21c

Doxycycline 24390-14-5 512.94 0.01 -0.02 0.05 0.01c

Monensin 22373-78-0 692.85 0.01 1.62 1.72 1.56c

Sulfamethizole 144-82-1 270.33 0.05 0.54 0.62 0.62c

Sulfamethoxazole 723-46-6 253.28 0.01 0.89 0.98 0.98c

Tetracycline 64-75-5 482.92 0.01 -1.30 -1.26 -1.33c

422 aUS EPA (2008); bCalculated based on Vaes et al. (1997); cCalculated based onEscher et al. (2011); dAvdeef 

423 et al. (1998); eNeuwoehner et al. (2009)

424 *Dlipw calculated at pH 7, but fluoxetine speciation is fully charged at pH 4 and 7.
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425 Table 2: The fraction of each chemical used in the different equipotent mixtures.

Non-antibiotic 

pharmaceutical

t=0.5

Non-

antibiotic 
pharmaceutical

t=16

Antibiotic

t=0.5

Antibiotic

t=16

All 

t=0.5
All t=16

Carbamazepine 48.6% 66.1% 38.5% 64.6%

Diclofenac 2.2% 2.1% 1.8% 2.0%

Fluoxetine 35.7% 27.2% 28.5% 26.5%

Gemfibrozil 12.8% 4.4% 10.2% 4.2%

Naproxen 0.6% 0.3% 0.5% 0.3%

Doxycycline 10.1% 0.1% 2.1% 0.003%

Monensin 8.5% 4.4% 1.8% 0.1%

Sulfamethizole 26.3% 55.8% 5.4% 1.3%

Sulfamethoxazole 41.8% 39.3% 8.6% 0.9%

Tetracycline 13.4% 0.4% 2.7% 0.01%

426
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427 Table 3: Experimental log EC50 (M) and slope of individual chemicals at 0.5 and 16 h ± standard error (SE), with the 0.5 h to 16 h ratio. 

t=0.5 t=16
Chemicals

log EC50 ± SE slope ± SE log EC50 ± SE slope ± SE
t=0.5/t=16 ratio Classification

Carbamazepine -3.68 ± 0.02 0.97 ± 0.05 -3.67 ± 0.05 1.82 ± 0.30 0.99 Baseline toxicant

Diclofenac -4.92 ± 0.01 6.35 ± 0.59 -5.24 ± 0.08 6.00 ± 0.60* 2.11 Baseline toxicant

Fluoxetine -3.71 ± 0.02 1.84 ± 0.14 -4.02 ± 0.03 2.54 ± 0.52 2.04 Baseline toxicant

Gemfibrozil -4.16 ± 0.01 2.64 ± 0.20 -4.81 ± 0.03 2.22 ± 0.20 4.43 Baseline toxicant

N
on

-a
nt

ib
io

tic
 

ph
ar

m
ac

eu
tic

al
s

Naproxen -5.47 ± 0.02 1.49 ± 0.10 -6.03 ± 0.02 1.95 ± 0.15 3.58 Baseline toxicant

Doxycycline -4.92 ± 0.10 0.39 ± 0.04 -7.92 ± 0.02 1.42 ± 0.09 995 Specifically acting

Monensin -4.93 ± 0.02 1.74 ± 0.15 -6.44 ± 0.05 1.17 ± 0.13 32.6 Specifically acting

Sulfamethizole -4.44 ± 0.03 1.33 ± 0.09 -5.29 ± 0.03 2.48 ± 0.35 7.16 Specifically acting

Sulfamethoxazole -4.24 ± 0.02 1.35 ± 0.08 -5.46 ± 0.02 1.16 ± 0.06 16.7 Specifically actingA
nt

ib
io

tic
s

Tetracycline -4.83 ± 0.08 0.48 ± 0.05 -7.51 ± 0.02 1.62 ± 0.16 484 Specifically acting

428 *slope fitted to 6
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429 Table 4: Experimental EC50 (M) with 95% confidence intervals for all mixtures compared to 

430 concentration addition and independent action predictions.

Concentration addition 

(CA) predictions

Independent action (IA) 

predictions
Experimental

log EC50 EC50 log EC50 EC50 log EC50 EC50

# 

Components

Non-antibiotic pharmaceuticals

t=0.5

-3.99

(-4.00 to

-3.97)

1.03×10-4 

(9.91×10-5 to 

1.07×10-4)

-3.76

(-3.78 to

-3.74)

1.76×10-4 

(1.68×10-4 to 

1.84×10-4)

-4.07

(-4.11 to

-4.02)

8.55×10-5

(7.73×10-5 to 

9.47×10-5)

5

t=16

-4.18

(-4.23 to

-4.13)

6.59×10-5 

(5.91×10-5 to 

7.35×10-5)

-3.82

(-3.90 to

-3.74)

1.52×10-4 

(1.27×10-4 to 

1.82×10-4)

-4.08

(-4.13 to

-4.03)

8.29×10-5

(7.38×10-5 to 

9.32×10-5)

5

Antibiotics

t=0.5

-4.59

(-4.65 to

-4.53)

2.56×10-5 

(2.23×10-5 to 

2.94×10-5)

-4.96

(-5.06 to

-5.86)

1.10×10-5 

(8.73×10-6 to 

1.38×10-5)

-4.54

(-4.61 to

-4.47)

2.86×10-5 

(2.43×10-5 to 

3.36×10-5)

5

t=16

-5.76

(-5.79 to

-5.74)

1.72×10-6 

(1.61×10-6 to 

1.83×10-6)

-5.64

(-5.67 to

-5.61)

2.27×10-6 

(2.12×10-6 to 

2.43×10-6)

-5.62

(-5.71 to

-5.53)

2.40×10-6 

(1.93×10-6 to 

2.98×10-6)

5

All components

t=0.5
-4.20

(-4.27 to 

-4.12)

6.36×10-5

(5.38×10-5 to 

7.51×10-5)

-4.40

(-4.51 to

-4.28)

4.03×10-5

(3.11×10-5 to 

5.22×10-5)

-4.41

(-4.48 to

-4.35)

3.87×10-5 

(3.33×10-5 to 

4.49×10-5)

10

t=16
-4.46

(-4.50 to 

-4.41)

3.50×10-5

(3.19×10-5 to 

3.85×10-5)

-4.11

(-4.16 to

-4.05)

7.85×10-5

(6.87×10-5 to 

8.97×10-5)

-4.28

(-4.32 to

-4.24)

5.29×10-5 

(4.84×10-5 to 

5.79×10-5)

10

Two-step prediction (TSP) Experimental

log EC50 EC50 log EC50 EC50

t=0.5 -4.27 (-4.29 to -4.26)
5.34×10-5

(5.16×10-5 to 5.52×10-5)

-4.41

(-4.48 to

-4.35)

3.87×10-5 

(3.33×10-5 to 

4.49×10-5)

10

t=16 -4.36 (-4.36 to -4.36)
4.40×10-5

(4.38×10-5 to 4.41×10-5)

-4.28

(-4.32 to

-4.24)

5.29×10-5 

(4.84×10-5 to 

5.79×10-5)

10

431 NB: 95% confidence intervals were calculated based on the derived σlogEC from error propagation. 
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432 List of Figures

433

434 Figure 1: Concentration-effect curves for non-antibiotic pharmaceuticals and antibiotics at 0.5 and 

435 16 h.

436

437 Figure 2: log EC50 at 0.5 h versus log EC50 at 16 h.

438

439 Figure 3: Experimental EC50 values in the BLT-Screen at 0.5 h (closed black symbols) and 16 h 

440 (open black symbols) (pH 4) compared to literature BLT-Screen (0.5 h) EC50 values for 

441 carbamazepine, gemfibrozil and naproxen (blue closed diamond) (pH 4) (van de Merwe and 

442 Leusch, 2015) and literature Microtox EC50 values for diclofenac, fluoxetine, gemfibrozil, 

443 naproxen, doxycycline, sulfamethoxazole and tetracycline (red closed triangle) (pH 7) (Tang et al., 

444 2013). The experimental EC50 values in the present study were also compared to the baseline 

445 toxicity QSAR predictions (red line) from Tang et al. (2013), which were corrected for speciation 

446 using log Dlipw at pH 4.

447

448 Figure 4: Concentration addition (CA) and independent action (IA) predictions for the five-

449 component non-antibiotic pharmaceutical mixtures at A) 0.5 h and B) 16 h and the five-component 

450 antibiotics mixtures at C) 0.5 h and D) 16 h, with CA, IA and two-step prediction (TSP) for the ten-

451 component non-antibiotic pharmaceutical and antibiotics mixtures at E) 0.5 h and F) 16 h. 

452 Experimental results are shown using white squares. Different mixture ratios were used for each 

453 time point and are provided in Table 2.
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Highlights

 Mixture effects of pharmaceuticals and antibiotics assessed in a bacterial assay

 Acute and chronic exposure considered, with antibiotic effect increasing over time

 Concentration addition, independent action and two-step prediction models applied

 Mixture toxicity modelling in close agreement with experimental results

 CA suitable to model non-specific and specific chemical effects in bacterial assays
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