52 research outputs found

    grmonty: a Monte Carlo Code for Relativistic Radiative Transport

    Full text link
    We describe a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The version we describe here is designed to model hot accretion flows in the Kerr metric and therefore incorporates synchrotron emission and absorption, and Compton scattering. The code can be readily generalized, however, to account for other radiative processes and an arbitrary spacetime. We describe a suite of test problems, and demonstrate the expected N1/2N^{-1/2} convergence rate, where NN is the number of Monte Carlo samples. Finally we illustrate the capabilities of the code with a model calculation, a spectrum of the slowly accreting black hole Sgr A* based on data provided by a numerical general relativistic MHD model of the accreting plasma.Comment: 38 pages, 17 figures, accepted to ApJ

    Radiative Models of Sgr A* from GRMHD Simulations

    Full text link
    Using flow models based on axisymmetric general relativistic magnetohydrodynamics (GRMHD) simulations, we construct radiative models for sgr A*. Spectral energy distributions that include the effects of thermal synchrotron emission and absorption, and Compton scattering, are calculated using a Monte Carlo technique. Images are calculated using a ray-tracing scheme. All models are scaled so that the 230 GHz flux density is 3.4 Jy. The key model parameters are the dimensionless black hole spin a*, the inclination i, and the ion-to-electron temperature ratio Ti/Te. We find that: (1) models with Ti/Te=1 are inconsistent with the observed submillimeter spectral slope; (2) the X-ray flux is a strongly increasing function of a*; (3) the X-ray flux is a strongly increasing function of i; (4) 230 GHz image size is a complicated function of i, a*, and Ti/Te, but the Ti/Te = 10 models are generally large and at most marginally consistent with the 230 GHz VLBI data; (5) for models with Ti/Te=10 and i=85 deg the event horizon is cloaked behind a synchrotron photosphere at 230 GHz and will not be seen by VLBI, but these models overproduce NIR and X-ray flux; (6) in all models whose SEDs are consistent with observations the event horizon is uncloaked at 230 GHz; (7) the models that are most consistent with the observations have a* \sim 0.9. We finish with a discussion of the limitations of our model and prospects for future improvements.Comment: 25 pages, 5 figures, ApJ accepte

    The photometric observation of the quasi-simultaneous mutual eclipse and occultation between Europa and Ganymede on 22 August 2021

    Full text link
    Mutual events (MEs) are eclipses and occultations among planetary natural satellites. Most of the time, eclipses and occultations occur separately. However, the same satellite pair will exhibit an eclipse and an occultation quasi-simultaneously under particular orbital configurations. This kind of rare event is termed as a quasi-simultaneous mutual event (QSME). During the 2021 campaign of mutual events of jovian satellites, we observed a QSME between Europa and Ganymede. The present study aims to describe and study the event in detail. We observed the QSME with a CCD camera attached to a 300-mm telescope at the Hong Kong Space Museum Sai Kung iObservatory. We obtained the combined flux of Europa and Ganymede from aperture photometry. A geometric model was developed to explain the light curve observed. Our results are compared with theoretical predictions (O-C). We found that our simple geometric model can explain the QSME fairly accurately, and the QSME light curve is a superposition of the light curves of an eclipse and an occultation. Notably, the observed flux drops are within 2.6% of the theoretical predictions. The size of the event central time O-Cs ranges from -14.4 to 43.2 s. Both O-Cs of flux drop and timing are comparable to other studies adopting more complicated models. Given the event rarity, model simplicity and accuracy, we encourage more observations and analysis on QSMEs to improve Solar System ephemerides.Comment: 23 pages, 5 appendixes, 16 figures, 7 table

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT

    Dominância fiscal : uma investigação empírica sobre o caso brasileiro no período de 2003 a 2014

    Get PDF
    A estabilização econômica dos anos de 1990 e a adoção do tripé econômico, a partir de 1999, marcam o fim de um capítulo delicado da história brasileira; a partir de então, era necessária a existência de certa sintonia de políticas monetária e fiscal para a manutenção do controle dos diversos indicadores econômicos. Contudo, com essa reciprocidade na política econômica, são incitadas discussões sobre a orientação do governo na hora de definir suas prioridades nesse campo: as variáveis fiscais são priorizadas e, por conseguinte, determinadas, forçando as monetárias a se ajustarem – ou o contrário? A resposta para esse questionamento leva à discussão sobre a dominância fiscal. Assim, esse trabalho visa verificar empiricamente, usando das modelagens econométricas VAR e estudo de eventos, se há dominância fiscal ou monetária na economia brasileira e se a eficácia da política monetária mudou na transição do governo Lula para o governo Dilma. O resultado foi inconclusivo para o governo Lula e indicou dominância fiscal no governo Dilma. Ainda verificou-se não haver modificação na eficácia da política monetária.Economic stabilization, in the 1990s, and utilization of an economic tripod, after 1999, represents the end of a delicate chapter in Brazilian history. Ever since, it was necessary the existence of a certain agreement between monetary and fiscal politic, in order to maintain under control a variety of economic indicators. However, this reciprocity (in economic politic) starts discussions about the real government orientations when it comes to define its priority on this subject: are the fiscal variables priorized, and then, determined, forcing monetary variables to adjust themselves, or the opposite? The answer to these questions emerge from the fiscal dominance discussion. This paper intends to empiric verify, using econometric modeling VAR and event study, if there is fiscal dominance or monetary in Brazilian economy and whether the effectiveness of monetary politic has changed in the transition from Lula's government to the Dilma government. The result was inconclusive for the Lula government and indicated fiscal dominance in the Dilma government. There was still no change in the efficiency of the monetary politic.CAPE

    First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass

    Get PDF
    In this paper we quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A*, as observed by the EHT in 2017 April at a wavelength of 1.3 mm. We find that the Sgr A* data exhibit variability that exceeds what can be explained by the uncertainties in the data or by the effects of interstellar scattering. The magnitude of this variability can be a substantial fraction of the correlated flux density, reaching ∼100% on some baselines. Through an exploration of simple geometric source models, we demonstrate that ring-like morphologies provide better fits to the Sgr A* data than do other morphologies with comparable complexity. We develop two strategies for fitting static geometric ring models to the time-variable Sgr A* data; one strategy fits models to short segments of data over which the source is static and averages these independent fits, while the other fits models to the full data set using a parametric model for the structural variability power spectrum around the average source structure. Both geometric modeling and image-domain feature extraction techniques determine the ring diameter to be 51.8 ± 2.3 μas (68% credible intervals), with the ring thickness constrained to have an FWHM between ∼30% and 50% of the ring diameter. To bring the diameter measurements to a common physical scale, we calibrate them using synthetic data generated from GRMHD simulations. This calibration constrains the angular size of the gravitational radius to be 4.8−0.7+1.4 μas, which we combine with an independent distance measurement from maser parallaxes to determine the mass of Sgr A* to be 4.0−0.6+1.1×106 M ⊙

    The Event Horizon Telescope Image of the Quasar NRAO 530

    Get PDF
    We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%–8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μas along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin

    Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI

    Get PDF
    The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87* and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse (u, v) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure to detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87*. We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87*, finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency
    corecore