8 research outputs found

    State-space approach to evaluate effects of land levelling on the spatial relationships of soil properties of a lowland area

    No full text
    Land levelling is an agricultural practice to correct soil surface irregularities turning the area more efficient for management of agronomic inputs. The technique has been adopted mainly in lowland areas used for flood irrigation of rice. As a result sub-surface soil layers may be exposed with possible impact on crop production by changing soil properties. This study aimed to evaluate the effects of land levelling on the spatial relationships of soil properties. Relations among them were quantified using a state-space approach in different scenarios constructed from data sets in a 1 ha lowland area sampled as a grid. The grid consisted of 100 sampling points (10 m × 10 m), with samples collected from the 0–0.20 m soil layer, before and after levelling, totalizing 200 samples. Soil water contents at field capacity (θFC) and permanent wilting point (θPWP) were taken as response variables due to their importance on rice water management. Sand, silt and clay contents, soil microporosity (Micro) and bulk density (BD), cation exchange capacity (CEC), organic carbon content (Corg), and the depth of the top of the B horizon in relation to soil surface (DTB) were used as co-variables through an evaluation of their spatial auto- and cross-correlation behaviors with θFC and θPWP. Eight data-array scenarios were tested. Results showed that levelling induced negative effects on soil quality since this procedure decreased θFC and θPWP, Corg, and CEC as well as increased BD. Using the state-space approach, we concluded that its performance in estimating θFC and θPWP was affected by the scenarios after levelling, the best performance being for the vertical scenarios. DTB and CEC contributed to the estimation of both soil water contents for all scenarios after levelling. The main problem associated to the levelling is the cutting of shallow soils which decreases their capacity to store water and to exchange cations in the effective arable depth which will be explored by the crop root system. As DTB is directly related to the spatial distribution of taxonomic soil profile properties, the state-space approach, which considers sampling location coordinates, may be a potential on-site-specific tool aiming at the recuperation of degraded soils through amendments since it opens the possibility for farmers to manage a crop field based on local environmental properties, with their spatial association and localized variation being a function of the distance between their measurements145135147CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESSem informaçãoSem informaçã

    Organic Matter Fractions and Quality of the Surface Layer of a Constructed and Vegetated Soil After Coal Mining. I - Humic Substances and Chemical Characterization

    No full text
    After open coal mining, soils are “constructed”, which usually contain low levels and quality of organic matter (OM). Therefore, the use of plant species for revegetation and reclamation of degraded areas is essential. This study evaluated the distribution of carbon (C) in the chemical fractions as well as the chemical characteristics and humification degree of OM in a soil constructed after coal mining under cultivation of perennial grasses. The experiment was established in 2003 with the following treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactilon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). In 2009, soil samples were collected from the 0.00-0.03 m layer and the total organic carbon stock (TOC) and C stock in the chemical fractions: acid extract (CHCl), fulvic acid (CFA), humic acid (CHA), and humin (CHU) were determined. The humic acid (HA) fraction was characterized by infrared spectroscopy and the laser-induced fluorescence index (ILIF) of OM was also calculated. After six years, differences were only observed in the CHA stocks, which were highest in T1 (0.89 Mg ha-1) and T4 (1.06 Mg ha-1). The infrared spectra of HA in T1, T2 and T4 were similar to T6, with greater contribution of aliphatic organic compounds than in the other treatments. In this way, ILIF decreased in the sequence T5>T3>T4>T1>T2>T6, indicating higher OM humification in T3 and T5 and more labile OM in the other treatments. Consequently, the potential of OM quality recovery in the constructed soil was greatest in treatments T1 and T4
    corecore