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A B S T R A C T

This study evaluates the use and the ability of visual examinations for assessing soil structural quality

(SSQ) in soils with contrasting textures and under different land uses. The study searched for similarities

in SSQ class between visual examinations and soil physical and hydraulic properties (soil organic carbon

(SOC), aggregate stability, bulk density, porosity, plant available water capacity (PAWC) and unsaturated

and saturated hydraulic conductivity), as well as the statistical relationships between them. The visual

examinations used were the visual evaluation of soil structure (VESS), the visual soil assessment (VSA),

the visual assessment of aggregate stability and the visual type of aggregates index. The latter is

proposed as a new visual index for assessing SSQ. Samples were taken on a sandy loam and a silt loam

soil, both under cereal monoculture (CM) and permanent pasture (PP), with conventional tillage and no

tillage, respectively. Visual examination methods indicated significant differences between CM and PP in

the silt loam soil (0.01 < P < 0.05), which were confirmed by significant differences in soil porosity and

PAWC values. Wet sieving and the visual type of aggregates index were similar in identifying differences

between land uses in both soils. Measurements of the visual type of aggregates index and of the

hydraulic conductivity at different pressure heads were similar in indicating the soil structure condition

of the soils. In the silt loam soil, the visual examinations were most related to properties such as SOC,

PAWC, aggregate stability and porosity, whereas in the sandy loam soil they were most associated with

water flow properties. The present study demonstrated that visual examinations are reliable semi-

quantitative methods to assess SSQ and could be considered as promising visual predictors of soil

physical properties (0.33 < R2 < 0.95). Finally, from the dissimilarities in terms of soil quality found with

the VSA, VESS and porosity compare to the amount of SOC, SOC should be used cautiously as a sole

indicator for soil structural quality as has been proposed in the literature, because SOC per se is not

always well related to soil structural quality.

� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In agricultural soils, tillage practices modify soil properties and
quality and hence affect crop production and the environment
(Batey and McKenzie, 2006). Machinery traffic, tillage and loss of
soil organic matter have adverse effects on soil structural quality
(Guimaraes et al., 2013) and are generally resulting in soil
compaction (Batey, 2009). Loss of integrity of soil structural units,
decrease in soil volume, increase in bulk density (BD), decrease in
porosity and a reduction in saturated hydraulic conductivity (Ks)
are the principal consequences of soil structure degradation and
soil compaction (Newell-Price et al., 2013).

Soil structure is the property most frequently evaluated when
determining soil quality under different land uses and tillage
practices. Soil structure is usually evaluated in an indirect way
from properties such as soil organic carbon (SOC) content, BD,
porosity, soil water retention curve (SWRC), soil resistance to root
growth, Ks, and infiltration rate (Lal and Shukla, 2004). These
properties, which can be used as indicators of soil physical quality
(Reynolds et al., 2009), are usually evaluated by classical tests,
which refer in this paper to those laboratory and field measure-
ments frequently used to characterize and monitor physical
condition of soils. Despite the many instruments or techniques
available to measure properties related to soil structure, there are
many circumstances where such tests cannot be conducted or the
number of samples has to increase to adequately capture the
spatial and temporal variability (Batey, 2000).

Facing those limitations, the direct evaluation of morphological
structural properties in the field is a possible alternative (Boizard
et al., 2005). In recent years, several methods of visual field
examination have been developed to provide a direct description
of soil structure, helping farmers to take rapid decisions in order to
improve the soil structural quality, and thus ensuring the soil’s
capacity of sustainable production. The importance of visual field
examination of soil quality has been widely recognized as it plays a
particularly important role in providing rapid semi-quantitative
data on physical soil quality (Shepherd, 2000; Mueller et al., 2009;
Garbout et al., 2013).

The morphological properties comprised in these methods are
used in classical soil survey and classification. They are not
competing with but rather complementary to soil physical
properties measurements (Karlen et al., 2003). Morphological
descriptions of soil structure also provide information that cannot
easily be obtained by other methods, such as the shape and
strength of aggregates, type of macropores, and macropores
continuity and connectivity (Lin et al., 1999a). These are properties
that reveal differences in quality between land use types and
detect harvest compaction in cereal crops (Guimaraes et al., 2013).

Visual field examination methods are now being used in several
countries and have shown value in explaining differences in crop
performance and yield resulting from soil management and type
(Ball et al., 2013). To provide similar information through other
Table 1
Description and characteristics of a sandy loam and a silt loam soil under cereal mono

Soils Land

use

WRB class Drainage status Clay

(g kg�1)

Silt

(g kg�1)

VFS

(g kg�

Sandy loam CM Cambisol Well drained 136 120 426 

PP Cambisol Well drained 102 155 379 

Silt loam CM Luvisol Moderately

well drained

125 657 128 

PP Luvisol Moderately

well drained

142 646 113 

WRB = World Reference Base for Soil Resources (soil classification system), VFS = very fin

SOM = soil organic matter.

pH and EC (soil electrical conductivity) were determined in 1:2.5 soil solution ratio.
measures of soil physical condition such as BD, penetration
resistance, porosity, water retention or hydraulic conductivity,
requires several measurements and can be costly and time
consuming (Newell-Price et al., 2013). Therefore, to encourage
researchers and farmers to use simple but accurate indicators for
evaluating and monitoring the soil structural quality and soil
degradation, there is a need to extend the validation of simple
visual examinations. In this survey, we seek for the applicability
and validation of proposed visual examinations for soil structural
quality assessment and the use of new visual indices such as the
assessment of the type of aggregates.

Comparisons of visual examination of soils under different land
uses and with contrasting textures, and their relationships with
physical and hydraulic properties are not well documented in
literature. The objective of this study is therefore to evaluate the
use and the ability of visual field examinations for assessing soil
structural quality in soils with contrasting textures and land uses
by comparing them to soil physical and hydraulic properties
related to function of the soil.

2. Materials and methods

2.1. Field site description

The survey was conducted in the Flanders Region of Belgium, on
a sandy loam and a silt loam soil, textures commonly found in
many agricultural soils in Belgium (Table 1). The sandy loam soil is
a Cambisol located in the community of Kruishoutem (508590 N,
38310 E), where two plots of 810 m2 (18 m � 45 m) were selected,
one under cereal mono-cropping (Zea mays L.) with conventional
tillage (CM) and another under permanent pasture (PP). Conven-
tional tillage consisted of primary tillage with mouldboard plough,
and secondary tillage with harrow + seed drill. PP is used in this
area to protect the soil surface against erosion and is free of
grazing. The silt loam soil is a Luvisol located in the community of
Heestert (508470 N, 38240 E), where again two plots of 810 m2

(18 m � 45 m) were selected: one under rotation of corn (Zea mays

L.) and winter wheat (Triticum aestivum L.) with conventional
tillage, and the other under PP with the constant presence of cattle
(7.5 animals per ha). Here, conventional tillage comprised primary
tillage with cultivator + mouldboard plough, followed by second-
ary tillage with harrow and seed drill.

2.2. Soil sampling

In each plot, six sampling points were randomly selected and
soil cores were taken simultaneously with an on field morphologi-
cal evaluation of soil structure. Three soil samples were taken with
�100 cm3 Kopecky steel rings (inner diameter of 5.1 cm and a
height of 5 cm) at the half way of the top soil layer (0–10 cm) in
each sampling point to determine BD, SWRC and Ks, hence three
replicates per point per property. Two undisturbed blocks of soil
culture (CM) and permanent pasture (PP).

1)

FS

(g kg�1)

MS

(g kg�1)

CS

(g kg�1)

VCS

(g kg�1)

SOM

(g kg�1)

pHKCl EC

(dS m�1)

272 38 6 2 23.2 5.96 0.10

307 39 11 7 26.8 4.60 –

74 13 2 1 18.9 6.22 0.18

82 12 3 2 55.6 5.58 –

e sand, FS = fine sand, MS = medium sand, CS = coarse sand, VCS = very coarse sand,
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(20 cm � 10 cm � 20 cm) were extracted from each sampling
point to conduct the visual field examination. The water content
at sampling was close to field capacity (�33 kPa).

2.3. Soil physical and hydraulic properties for assessing the soil

structural quality

The soil physical properties evaluated were aggregate stability,
BD, porosity, plant available water capacity (PAWC) and unsatu-
rated and saturated hydraulic conductivity. Also, particle size
distribution by sedimentation using the pipette method (Gee and
Or, 2002), SOC by wet oxidation (Walkley and Black, 1934),
gravimetric soil water content, pH and EC (soil electrical
conductivity) were determined.

2.3.1. BD, porosity and PAWC

The SWRC was constructed by measuring soil water content at
eight matric potentials. For the matric potential ranging from �0.1
to �10 kPa, the sand box apparatus (Eijkelkamp Agrisearch
Equipment, the Netherlands) was used. Pressure chambers were
used to measure the water content at matric potential of �33 kPa,
�100 kPa and �1500 kPa (Soilmoisture Equipment, Santa Barbara,
CA, USA). The procedure is described by Cornelis et al. (2005). Soil
BD was determined at �10 kPa matric potential. Total pore volume
(TPV), macroporosity (MacP, uh=0 kPa � uh=�1 kPa), microporosity
(MicP, uh=0 kPa � [uh=0 kPa � uh=-10 kPa]), air capacity (AC, uh=0 k-

Pa � uh=�10 kPa), and PAWC (uh=-33 kPa � uh=�1500 kPa) were calculat-
ed from the SWRC data, with h denoting matric potential.

2.3.2. Soil hydraulic conductivity

Ks was obtained by using two methods: (i) on soil cores with the
constant-head method (Klute and Dirksen, 1986), using a
laboratory permeameter (LP), and (ii) in the field with a tension
infiltrometer (TI), similar to that described by Reynolds and Elrick
(1991). Geometric means of the three values per sampling point
were taken.

In case of LP the undisturbed core samples were placed in a
closed permeameter (Eijkelkamp Agrisearch Equipment) after
saturation. A constant water head was obtained by creating a
difference in water pressure on both sides of the saturated soil
sample so that a water flow was passing through the soil sample.
The flow was measured until a constant water flux was observed
and Ks was then determined using Darcy’s equation.

Ks ¼
QL

Ad
(1)

where Q is the outflow through the soil core (cm3 h�1), L is the
length of the soil core (cm), A is the surface area of the soil core
(cm2), and d is the applied hydraulic head (cmH2O).

The TI method (Soilmoisture Equipment) was applied in a
relatively levelled spot where local surface irregularities were
covered with a fine layer of �5 mm of sand (0.5–0.10 mm in
diameter) to ensure a good hydraulic contact between the disc and
the soil surface. Apparent steady-state infiltration rates were
measured at sequential supply water potentials of �10, �6, �3 and
�1 cmH2O. It was assumed, based on the capillary theory, that
these water potentials exclude pores of diameter or fissures of
width greater than 0.30 mm, 0.5 mm, 1 mm, and 3 mm, respec-
tively from participating in the water flow.

The non-linear regression method (Logsdon and Jaynes, 1993)
based on the theoretical analysis of the steady-state water flux
under the infiltrometer (Wooding, 1968) was used to calculate soil
K(h) and a according to:

QxðhÞ
pR2

¼ Ks expðahÞ þ ½4Ks expðahÞ�
pRa

(2)
where Qx(h) is the steady infiltration rate under pressure head of h

(�m), R is the radius of the disc, and a is the Gardner constant
which characterizes the soil pore size distribution. The parameter
Ks and a were determined by curve-fitting, using the Levenberg–
Marquardt algorithm, allowing to determine hydraulic conductiv-
ity K(h) under any other pressure head h from Gardner’s
exponential function:

K hð Þ ¼ Ks expðahÞ (3)

2.4. Morphological characterization of field soil structure

The morphological characterization of soil structure was
conducted by using two methods of visual field examination:
visual evaluation of soil structure (VESS) by Ball et al. (2007) based
on Peerlkamp (1959) and modified by Guimaraes et al. (2011), and
visual soil assessment (VSA) by Shepherd (2009). For this visual
field examination, two blocks of soil (20 cm deep, 10 cm thick and
20 cm long) were taken at each sampling location. One block was
broken by hand (VESS) and the other by dropping one to three
times from a height of 1 m into a plastic tray (VSA).

2.4.1. Visual evaluation of soil structure (VESS)

The evaluation of the soil blocks was conducted according to the
methodology described by Ball et al. (2007). This consists of
identifying layers of contrasting structure and giving a score to each
soil layer by comparing the appearance of the soil block (after hand
breaking) with a visual key proposed by Guimaraes et al. (2011). The
overall score of a soil is then determined by multiplying the score of
each layer by its thickness and dividing the product by the overall
depth. The blocks of soil were graded on a scale from 1 to 5 where 1
represents the best condition. Scores were fitted between structural
quality categories when the soil block had the properties of both. The
assigned score was based on factors such as difficulty in extracting
the soil block, aggregate type and size, presence of large worm holes,
root clustering, thickness and deflections, and the necessity to break
large aggregates to small fragments to reveal their type. Soils with
scores of 1–3 have an ‘acceptable’ condition of soil structure,
whereas those with scores of 4–5 have a ‘limiting’ condition and
require management practice changes.

2.4.2. Visual soil assessment (VSA)

The VSA was conducted as described by Shepherd (2009). Each
indicator used by this method (soil texture, soil structure, soil
porosity, number and colour of soil mottles, soil colour, earth-
worms, soil smell, potential rooting depth, surface ponding, surface
cover and surface crusting, and soil erosion), was given a visual
score of 0 (poor), 1 (moderate), 2 (good), or an in-between score
(0.5 = moderately poor and 1.5 = moderately good). This scoring
was done by comparing the soil with the description of each
indicator and the photographs from the VSA field guide manual.
The ratings for each indicator were then weighted and summed
resulting in a final score for the soil structural quality. The field
guide manual for cropping land was used in CM, whereas in the
other plots (PP) the manual for pastoral grazing was applied. Soils
with a sum of visual scores <20 (under both grazing and cropping)
have a poor soil quality, and soils with values >35 (under grazing)
or >37 (under cropping) have a good soil quality. Values in
between those ranges have a moderate soil quality condition.

2.5. Visual soil structural quality assessment based on type of

aggregates

The type of aggregates, in terms of form, was considered as an
individual morphological index of soil structural quality, namely
visual type of aggregates index. After hand breaking of the soil for



Table 2
Criteria used to score the type of aggregate and soil structural quality.

Type of aggregate Abundance Score Soil structural

quality class

Rounded and crumbly 100% round 1 Good

Sub angular blocky 100% sub angular 2 Moderately good

Sub angular and angular blocky >50% sub angular 3 Moderate

Angular and sub angular blocky >50% angular 4 Moderately poor

Angular blocky 100% angular 5 Poor
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the visual soil evaluation, aggregates of 1–2 cm in diameter were
described in terms of shape according to FAO (2006). The
abundance of rounded aggregates was considered as an indicator
of ‘good’ quality for crop growth, and the abundance of sharper
edge aggregates as ‘poor’ quality. The abundance of a certain type
of aggregates was graded on a scale from 1 to 5, where 1 was the
best (Table 2). This scale was based on the appearance of small
aggregates as is considered in the key of VESS described by
Guimaraes et al. (2011).

2.6. Visual soil structural quality assessment based on water

aggregate stability

Soil structural quality was also assessed by evaluating the water
aggregate stability. Two methods were used: wet sieving, and
visual evaluation of the degree of fragmentation and dispersion of
aggregates. The wet sieving test was conducted using the Yoder
method modified by Kemper and Rosenau (1986). Air-dried
aggregates of 1–2 mm in diameter were sieved on a single sieve
(0.25 mm) in distilled water for 3 minutes at a constant,
automatically controlled speed. The mean weight diameter
(MWD) was calculated from the water stable aggregates:

MWD ¼Wsd

W t
(4)

where Ws is the stable soil aggregate fraction (g), d is the mean
diameter of the fraction (mm), and Wt is the total weight of the
sample (g).

The visual assessment of the aggregate stability was conducted
by visually evaluating the ability of the aggregate in maintaining its
initial shape and size after immersion in water. The modified
Emerson test described by Field et al. (1997) was used as reference.
Per sampling point, 12 aggregates of 1–2 cm in diameter were placed
in a ceramic plate with separated cavities. Each cavity was filled with
distilled water so that the aggregates were completely immersed.
Visual assessment of the degree of fragmentation and dispersion
was made 5 and 10 min after immersion of the aggregates. This
measurement was done either on aggregates at sampling water
Table 3
Soil structural quality of a sandy loam and a silt loam soil under cereal monoculture (CM

evaluation of soil structure (VESS). With VSA, lower values refer to poorer soil quality,

Soils Land use V

Soil structure Soil p

Score Class Score 

Sandy loam CM 1.5 a Good 1.1 a 

(0.3) (0.2) 

PP 1.7 a Good 1.0 a 

(0.4) (0.0) 

Silt loam CM 1.4 a Moderate 1.2 a 

(0.2) (0.2) 

PP 1.1 a Moderate 1.0 a 

(0.3) (0.0) 

Standard deviation for each index is given in parenthesis (�).

Values in a column followed by the same letter are not significantly different at P > 0.05.
content, near field capacity (�33 kPa matric potential), and air-
dried.

A visual appraisal of the aggregates appearance was made
according to the graphical scheme of aggregate stability test of
Beste (1999). An overall score between 0 and 2 was assigned. A
score of 2 indicates no or slight fragmentation and dispersion, 1
indicates fragmentation in more than two fragments and moderate
dispersion; and a score of 0 indicates strong dispersion and muddy
water. Scores were individually given to each aggregate, and an
average score was given afterwards for each sample.

2.7. Statistical analyses

In this survey a strip design (with six measurements taken
randomly within strip) was conducted instead of a complete
randomized block design. This was based on the spatial
homogeneity of soil texture present on each study area (Saey
et al., 2008). As spatial variability was taken into account, part of
the variability determined by a randomized block design was also
accounted for (Fagroud and Van Meirvenne, 2002). ANOVA was
used as a tool to discuss significant differences in soil structural
quality indicators. However, significant differences found have to
be seen within the limitations of the experimental design and
therefore are rather considered as tendencies. Nonparametric
Kruskal–Wallis rank sum tests were conducted to detect statistical
differences among land use in both soils for each measured
variable. Further, Spearman correlation tests were conducted to
measure the association between each pair of variables. A Levene’s
test (Schultz, 1985) was applied to compare the variability in the
scores between the different methods (VESS and VSA). The
Levene’s test was conducted by performing an analysis of variance
on the coefficients of variation (C.V.) with methods as a factor, and
on the ratio of the absolute deviations associated with each
observation from its respective group mean divided by the group
mean. All tests were conducted at the 5% significance level. With the
aim of assessing the tendency of the relationships between soil
physical indicators and the visual examination of soil structural
quality for both soils, analyses of simple regression was performed.
All analyses were performed using the statistical package SPSS 17.0.

3. Results

3.1. Comparison of soil structural quality evaluated by visual field

examinations and by soil physical properties

In the sandy loam soil, the difference in scores of the visual field
examination methods, VSA and VESS, was statistically not
significant (P > 0.05) under CM and PP. Both VSA and VESS
) and permanent pasture (PP) using the visual soil assessment (VSA) and the visual

 whereas with VESS lower values indicate better soil structural quality.

SA VESS

orosity Soil quality

Class Score Class Score Class

Moderate 31 a Moderate 3.0 a Moderate

(2.9) (0.8)

Moderate 32 a Moderate 2.8 a Moderate

(1.4) (0.5)

Moderate 35 a Moderate 2.7 a Moderate

(2.7) (0.3)

Moderate 31 b Moderate 3.4 b Poor

(1.6) (0.1)



Table 4
Soil properties of a sandy loam and a silt loam soil under cereal monoculture (CM) and permanent pasture (PP).

Soil Land

use

SOC

(g kg�1)

BD

(Mg m�3)

TPV

(cm3 cm�3)

MacP

(cm3 cm�3)

MicP

(cm3 cm�3)

AC

(cm3 cm�3)

FC

(cm3 cm�3)

PWP

(cm3 cm�3)

PAWC

(cm3 cm�3)

Sandy loam CM 11.6 b 1.29 a 0.51 a 0.05 a 0.36 b 0.16 a 0.20 0.02 0.18 a

(1.5) (0.07) (0.03) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01)

PP 13.4 a 1.31 a 0.51 a 0.04 a 0.39 a 0.12 b 0.28 0.08 0.20 a

(1.1) (0.03) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

Silt loam CM 9.4 b 1.34 a 0.50 b 0.10 a 0.32 b 0.17 a 0.26 0.11 0.15 b

(0.5) (0.09) (0.03) (0.04) (0.02) (0.05) (0.02) (0.02) (0.02)

PP 27.8 a 1.25 a 0.55 a 0.02 b 0.51 a 0.04 b 0.45 0.15 0.31 a

(4.1) (0.04) (0.02) (0.01) (0.01) (0.01) (0.02) (0.03) (0.04)

SOC = soil organic carbon, BD = bulk density, TPV = total pore volume, MacP = macropores, MicP = micropores, AC = air capacity, FC = field capacity, PWP = permanent wilting

point, PAWC = permanent available water capacity.

Standard deviation for each soil property is given in parenthesis (�).

Values in a column followed by the same letter are not significantly different at P > 0.05 between land uses.
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methods indicated ‘moderate’ soil structural quality for crop
growth and root penetration under both land uses (Table 3).
Regarding the silt loam soil, both VSA and VESS were able to
distinguish a poorer condition in terms of soil quality for the PP
plot under permanent grazing. Significant differences were found
between land uses for VSA and VESS scores (0.01 < P < 0.05).

In the sandy loam soil, VESS revealed a higher variability
(21.3%) than VSA (5.5%) (P < 0.01). In the silt loam soil, differences
in C.V. (VESS = 17.2%, VSA = 8.7%) were not found (P > 0.05). This
suggests that in sandy soils, VSA is less sensitive for revealing slight
spatial variation, in contrast with the silt loam soil for which both
methods showed a response to differences in soil quality condition.
Conversely, Spearman correlations indicated high and significant
correlations between both methods (r = �0.83).

Results from VSA and VESS methods were compared to soil
physical properties results (Table 4) in terms of soil quality class.
Soil BD did not reflect the differences in soil quality (P > 0.05),
among soils and land uses, shown by the visual field examination
methods. BD values were lower than 1.63 Mg m�3 and
1.49 Mg m�3, which are according to Pierce et al. (1983), critical
values for adequate aeration and unlimited root elongation for
sandy loam and silt loam, respectively.

When SOC was considered for comparison, the PP plot with silt
loam soil was having a ‘good’ soil quality and the rest are classified
as ‘poor’. A value of 23 g kg�1 of SOC is considered the lower critical
limit for maintaining a good soil structure in tilled soil (Greenland,
1981). The SOC values were higher in PP than CM (0.01 < P <0.05)
in both soils, which indicates better soil quality. This is distinct
with respect to the soil quality of the visual examination results
(VSA and VESS).

Regarding the individual score for the most critical indicators
of VSA method, i.e., soil structure and soil porosity, the best soil
structure condition (higher score) was found in the sandy loam
soil. Differences in visual structure and porosity conditions were
not found among land uses under the different soils (Table 3).
However, the lowest scores for soil structure and porosity were
found in the PP with permanent grazing in the silt loam soil, which
Table 5
Soil structural quality based on the visual type of aggregates index of a sandy loam an

Soils Land use u (cm3 cm�3) Aggrega

Sandy loam CM 0.21 Subang

PP 0.17 Subang

Silt loam CM 0.28 Subang

PP 0.30 Subang

u = volumetric soil water content at sampling.

Standard deviation of the mean value is given in parenthesis (�).

Values in a column followed by the same letter are not significantly different at P > 0.05.
is in correspondence with the values of the soil porosity indicators. In
this plot, values of MacP, MicP and AC (Table 4) felt in a ‘poor’ soil
quality class based on the threshold value proposed by Reynolds
et al. (2007). In contrast, in both soils and land uses the PAWC values
were >0.10 m3 m�3, which can be considered as a ‘good’ quality for
maximum root growth and adequate to store and provide water to
plant roots (Reynolds et al., 2007).

3.2. Comparison of soil structural quality evaluated by visual type of

aggregates index and by water flow

The abundance of a certain type of aggregates was tested as a
new index of soil structural quality for our soils (Table 5).
Subangular blocky aggregates were abundant in the sandy loam
soil, but in 5 out of the 12 soil blocks evaluated aggregates with
sharper edges and a firmer consistence were present in the second
layer (5–20 cm) of the 20 cm soil blocks. The overall visual type of
aggregates index score given to this soil, corresponded to a
‘moderate’ soil structural quality condition and no differences
were found between land uses (P > 0.05).

Most aggregates present in the silt loam soil were subangular
blocky in shape, for both CM and PP land uses (P > 0.05), which
correspond to a ‘moderately good’ soil quality. No-angular
aggregates were found in the PP plot under permanent grazing
in this soil, meaning that the visual type of aggregates index does
not reveal the poorer condition described by the previous
indicators in this plot.

The soil quality classes based on the visual type of aggregates
index were compared to the water flow measurements. Despite
not finding any significant differences in Ks (P > 0.05) between the
land uses for both LP and TI measurements at the two sites (Fig. 1),
measurements in the sandy loam soil with LP displayed ‘moderate’
and ‘moderately slow’ permeability classes in CM and PP,
respectively (NRCS, 2003). In the silt loam soil, Ks values in CM
and PP were classified as ‘moderately rapid’ and ‘moderate’
permeability, respectively. This demonstrates that the aggregates
with sharper edges and a firmer consistence found in the sandy
d a silt loam soil under cereal monoculture (CM) and permanent pasture (PP).

te form Score Class

ular and angular blocky 2.8 (1.2) a Moderate

ular and angular blocky 2.8 (1.1) a Moderate

ular blocky 2.4 (0.3) a Moderately good

ular blocky 2.3 (0.5) a Moderately good
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loam soil could restrict the water flow. Regarding the Ks

values estimated from TI measurements, the NRCS permeability
classification is not appropriate since it was based on vertical flow
(ring samples) while in TI there is also lateral flow.

Fig. 2 shows, for both soil and land uses, a decreasing trend in
K(h) from the pressure head at �1 cmH2O (corresponding with
pores of 3 mm in diameter) to the pressure head at �10 cmH2O
(representing a pore size of 0.3 mm in diameter). In the sandy loam
soil, K(h) was higher for CM than for PP, whereas an opposite trend
was observed in the silt loam soil. No significant differences were
found between the land uses (P > 0.05), which correspond to the
results from the visual type of aggregates index.

3.3. Comparison of soil structural quality evaluated by water

aggregate stability

Aggregate stability was evaluated using the classical test of wet
sieving and a visual examination method (Table 6). With regards to
wet sieving, the reduction of MWD using fast wetting of air-dried
aggregates of 1–2 mm in diameter was >50% for CM and <30% for
PP for both soils. A stable soil was considered to have >70% of the
aggregates remaining on the sieve of 0.25 mm after wet sieving,
and an unstable soil has <50%. The wet sieving test showed that
there was an effect of the land uses on aggregate stability for both
soils. Aggregates from PP were more resistant to breakdown after
wet sieving when fast wetting was applied (P < 0.05).

Regarding the visual evaluation of aggregate stability, when
field moist aggregates (approximately field capacity) were
immersed in distilled water, no changes in type and size of
aggregates were observed. However, when aggregates were air-
dried, fragmentation of the aggregates and dispersion of particles
were observed for both soils under CM (P < 0.01). Consequently,
when air-dried aggregates were used, the soil structural quality of
the sandy loam and silt loam soils under CM was visually classified
(
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Fig. 2. Geometric mean of unsaturated hydraulic conductivity values at pressure heads

infiltrometer for a sandy loam (a) and a silt loam (b) soil under cereal monoculture (CM) a

(b) was under permanent cattle grazing. Error bars indicate standard deviations. No si
as ‘moderate’ and ‘poor’, respectively. These results reveal an effect
of slaking, when the aggregates collapse because of entrapped air,
resulting from poor pore arrangement and weak bonds. Converse-
ly, PP for both soils resulted in ‘good’ soil structural quality by this
measure, irrespective of the antecedent moisture status of the
samples. Like the wet sieving test, the visual evaluation of
aggregate stability was able to distinguish differences in soil
structural quality between land uses in both soils.

3.4. Relationships between morphological scores and values of soil

physical and hydraulic properties

Besides searching for the similarities found between the
morphological evaluations and the soil physical and hydraulic
properties in classifying the soil structural quality of the soil, we
also sought statistical relationships between them. Table 7 shows
those regression equations that were significant at P = 0.05, with
soil physical and hydraulic properties as dependent variable and
the scores obtained from the various visual examination methods
as independent variable. A relationship between VSA and BD was
observed in sandy loam soil, with R2 = 0.50. Relationships between
VSA and SOC, MacP, MicP, AC, PAWC and MWD were observed in
silt loam soil, with R2 values ranging from 0.35 to 0.50. VESS was
also related to SOC (R2 = 0.51), MicP (R2 = 0.47), TPV (R2 = 0.47),
PAWC (R2 = 0.35) and MWD (R2 = 0.47) in the silt loam soil. In the
sandy loam soil, VESS was only related to K(h) at different pressure
heads (0, �1, �3 and �10 cmH2O), with R2 values ranging from
0.37 to 0.43. The individual scores given for the soil structure and
the soil porosity according to the VSA method were not correlated
with any of the soil physical and hydraulic properties.

The visual type of aggregates index was only related to K(h) at
different pressure heads in both soils. The strongest relationships
were between the visual type of aggregates index and Ks estimated
from TI measurements (R2 = 0.40) in the sandy soil, and with K(h) at
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gnificant differences between land uses were found (P > 0.05).



Table 6
Soil structural quality based on water aggregate stability of a sandy loam and a silt loam soil under cereal monoculture (CM) and permanent pasture (PP).

Soils Land use Visual assessment Wet sieving

Sampling moisture Class Air-dried Class MWD (mm) Class

u (cm3 cm�3) 5 min 10 min 5 min 10 min

Sandy loam CM 0.21 1.9 1.5 b Moderately good 1.2 0.9 b Moderate bad 0.46 b Poor

(0.1) (0.4) (0.5) (0.5) (0.1)

PP 0.17 2.0 2.0 a Good 2.0 2.0 a Good 0.83 a Good

(0.0) (0.0) (0.0) (0.1) (0.1)

Silt loam CM 0.28 1.7 1.5 b Moderately good 0.6 0.2 b Poor 0.40 b Poor

(0.3) (0.3) (0.5) (0.2) (0.1)

PP 0.30 2.0 2.0 a Good 1.9 1.9 a Good 1.0 a Good

(0.0) (0.0) (0.1) (0.1) (0.0)

u = volumetric soil water content at sampling.

Standard deviation for each soil indicator is given in parenthesis (�).

Values in a column followed by the same letter are not significantly different at P > 0.05.
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�10 cmH2O (R2 = 0.56) in the silt loam soil. Although significant
relationships (P < 0.05) were found between the morphological
scores and the soil physical and hydraulic properties, R2 values
remained low in our study and could only explain < 56% of the
variation of the VSA, VESS and visual type of aggregate index scores
of both the sandy loam and the silt loam soils.

On the other hand, with regards to the visual score of the
aggregate stability, strongest relationships were found with
the soil physical and hydraulic properties. In the silt loam soil,
there were significant relationships between the visual score of
aggregate stability and SOC (R2 = 0.89), MacP (R2 = 0.71), MicP
(R2 = 0.95), TPV (R2 = 0.49), AC (R2 = 0.80), PAWC (R2 = 0.91) and
MWD (R2 = 0.94). For the sandy loam soil relationships were
evidenced with AC (R2 = 0.65) and MWD (R2 = 0.59), and with K(h)

at different pressure heads (0.33 < R2 < 0.43).

4. Discussion

The visual examinations used in our study, reflect the different
conditions related to the complexity of the soil structure: (i) VESS
Table 7
Relationships between soil physical and hydraulic properties and the visual examination

based on the 12 observation points at each soil.

Sandy loam soil 

Equation R2 a 

BD = �0.0131 (VSA) + 1.7266 0.53 0.00 

Log Ks (TI) = �0.50 (VESS) + 0.3239 0.43 0.02 

Log K(h=�1 cm) = �0.476 (VESS) + 0.18 0.41 0.02 

Log K(h=�3 cm) = �0.4301 (VESS) � 0.0724 0.38 0.03 

Log K(h=�10 cm) = �0.3673 (VESS) � 0.5927 0.37 0.03 

Log Ks (TI) = 0.2721 (Tagg) � 1.9808 0.40 0.02 

Log K(h=�1 cm) = �0.26 (Tagg) � 0.448 0.39 0.02 

Log K(h=�3 cm) = �0.234 (Tagg) � 0.6468 0.36 0.03 

Log Ks (TI) = �0.4258 (VSt) � 0.5018 0.33 0.03 

Log K(h=�1 cm) = �0.434 (VSt) � 0.553 0.37 0.03 

Log K(h=�3 cm) = �0.3992 (VSt) � 0.7314 0.38 0.03 

Log K(h=�6 cm) = �0.394 (VSt) � 0.92 0.41 0.02 

Log K(h=�10 cm) = �0.3747 (VSt) � 1.106 0.43 0.02 

AC = �0.0294 (VSt) + 0.1823 0.65 0.00 

MWD = 0.2633 (VSt) + 0.2641 0.59 0.00 

a = statistical level of significance; BD = bulk density (Mg m�3); Log Ks (TI) = log10 o

Log Kh = unsaturated hydraulic conductivity determined by tension infiltrometer; AC =

carbon (g kg�1); MacP = macropores (cm3 cm�3); MicP = micropores (cm3 cm�3); PAWC 

VSA = overall visual soil assessment score; VESS = overall visual evaluation of soil struc

aggregate stability score (air-dried aggregates).
method in the silt loam soil was able to reveal the compaction
present in the PP plot under permanent grazing; (ii) the visual type
of aggregates index indicated a poorer condition in the sandy soil,
where a more angular type of aggregates was found; (iii) the visual
aggregate stability showed the effect of tillage on aggregate
stability of CM. This is in accordance with Mueller et al. (2013) who
showed the feasibility and reliability of visual examination
methods such as VSA and VESS, for giving scores and classes
characterizing the soil potential for cropping.

When numerical quantification of these visual examinations
was used as a factor in the estimation of soil physical and hydraulic
properties, simple relationships were found. These relationships
suggest that for our soils a visual quality is associated with at least
one quantitative quality. In the silt loam soil, the visual
examinations were most related to properties such as SOC, PAWC,
MWD and porosity, whereas in the sandy loam soil they were most
associated with water flow properties (Table 7).

In the silt loam soil, the soil structural quality of the different
plots was equally classifies by SOC (as an individual indicator) and
water stability tests. Whereas a dissimilar classification was given
 of soil structural quality of a sandy loam and silt loam soils. These relationships are

Silt loam soil

Equation R2 a

SOC = �0.232 (VSA) + 9.53 0.45 0.01

MacP = 0.01 (VSA)–0.281 0.35 0.04

MicP = �0.023 (VSA) + 1.165 0.45 0.01

AC = 0.018 (VSA)–0.48 0.42 0.02

PAWC = �0.02 (VSA) + 0.877 0.43 0.02

MWD = �0.079 (VSA) + 3.304 0.50 0.01

SOC = 1.364 (VESS) � 2.265 0.51 0.00

MicP = 0.128 (VESS) + 0.03 0.47 0.01

TPV = 0.051 (VESS) + 0.366 0.47 0.00

PAWC = 0.10 (VESS) � 0.077 0.35 0.03

MWD = 0.422 (VESS) � 0.572 0.47 0.01

Log K(h=�3 cm) = �0.659 (Tagg) � 0.146 0.35 0.03

Log K(h=�6 cm) = �0.602 (Tagg) � 0.459 0.41 0.02

Log K(h=�10 cm) = �0.434 (Tagg) � 1.144 0.56 0.00

SOC = 1.061 (VSt) + 0.739 0.89 0.00

MacP = �0.047 (VSt) + 0.107 0.71 0.00

MicP = 0.107 (VSt) + 0.304 0.95 0.00

TPV = 0.030 (VSt) + 0.49 0.49 0.01

AC = �0.0775 (VSt) + 0.187 0.80 0.00

PAWC = 0.0939 (VSt) + 0.129 0.91 0.00

MWD = 0.345 (VSt) + 0.3372 0.94 0.00

f saturated hydraulic conductivity estimated from tension infiltrometer data;

 air capacity (cm3 cm�3); MWD = mean weight diameter (mm); SOC = soil organic

= plant available water capacity (cm3 cm�3); TPV = total pores volume (cm3 cm�3);

ture score; Tagg = visual type of aggregates index score; VSt = visual evaluation of
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by SOC when compare to VSA, VESS, MacP, MicP and AC. In this soil,
the permanent presence of cattle on PP results in a constant
addition of manure, which increases SOC content. But also in soil
compaction from the cattle trampling that counteracted the
possible positive effect of SOC on soil structure. This opposite trend
has been also mentioned by Newell-Price et al. (2013). Our results
suggest that caution should be taken when using SOC as a sole soil
quality indicator in some conditions, as is often suggested when
deriving minimal data sets for soil quality evaluation (e.g. Shukla
et al., 2006). On the other hand, morphological evaluations could
give an immediate idea about properties that are time-consuming
in laboratory measurements, such as PAWC, MicP and MacP.
Subsequently, some inferences could be drawn for plant growth
and agricultural practices.

The higher aggregate stability found in soils under PP (P < 0.01,
Table 6) can be attributed to the presence of a higher density of
roots (visually evaluated) and a higher SOC content, which can
keep mineral particles together against destructive forces (Bronick
and Lal, 2005).

Although several authors have mentioned relationships be-
tween the overall score of VSA and VESS with soil properties under
different conditions (Shepherd, 2000, 2009; Mueller et al., 2009,
2013; Guimaraes et al., 2013), some disadvantages of these
methods have been mentioned. For instance, Newell-Price et al.
(2013) have appointed some weaknesses of using VSA in grassland
systems, where distinct contrasting layers can be found, ensuring
that the scores of the poorest layer within the topsoil could provide
a better indication of physical soil quality than a weighted average
score for the whole topsoil layer. This could be considered in the
case of the sandy loam soil, where unfavourable soil structure
(angular aggregates) was only described in the sub layer present in
some of the blocks of soil.

The relationships between the visual type of aggregates index
and the soil physical and hydraulic properties showed that the
water flow was facilitated when a higher amount of rounded
aggregates was present in both the sandy loam and the silt loam
soils. Sandy soils are expected to have a higher hydraulic
conductivity when no limitations of flow are present based on
the visual type of aggregate index. Generally, well-structured soils
with rounded aggregates tend to drain more easily than soils with a
poor structure or angular aggregates (Hu et al., 2009). According to
Alvarez et al. (2012) the lower roughness of the aggregates results
from the pressure exerted by farming and mutual friction.

In this study, as was mentioned before, the unfavourable soil
structure under the silt loam soil was not in correspondence with
the visual type of aggregates index. The interaction between the
root system and the higher SOC in this plot could have had a higher
effect on the shape of the aggregates.

Morphological characteristics evaluated in the field have been
referred to as important tools in the classification of the soil Ks

values, therefore it can be considered as factors to be incorporated
into hydraulic models (Ingelmo et al., 2011). In this study, we
showed the existence of single relationships between soil
hydraulic conductivity measurements using TI and different soil
properties. This confirms that the quantification of soil morpholo-
gy can be incorporated as soil structural information into the
hydraulic models. However, limitations are presented when there
is an absence of a proper means for quantifying soil morphology
(Lin et al., 1999a). Classification criteria have to be well defined
before quantifying morphological characteristics; hence the VSA
and VESS protocols, visual type of aggregates index and visual
aggregate stability are possible alternatives. Note that the relations
between morphological test scores and hydraulic conductivity
were dominantly present in the sandy soil, which suggests a more
uniform pore system (homogeneous pore size distribution) in the
sandy loam soil compared to the silt loam soil.
Moreover, Ks measured with LP was not correlated with any of
the morphological evaluations, most probably because of the high
variability in Ks. Differences in Ks using LP, and K(h) using TI
demonstrate the variation in values according to the method used
(Verbist et al., 2013), but also the importance of the sizes of the
pores participating in the water flow. Our results are supported by
those of Reynolds et al. (2000) and Verbist et al. (2013) who found
that TI values are significantly lower than any other method. Ks

values estimated from the TI measurements showed lower
variability (57%) than LP values (125%). When determining Ks

from TI measurements, only water flow in pores smaller than
3 mm in diameter is considered, whereas in case of LP all pores of
the soil medium in the core samples contribute to water flow,
including the larger pores due to burrows made by earthworms,
which typically show a high variability (Hu et al., 2009).
Macroporosity is an integral part of soil structure, which is
deficiently reflected by single soil physical and hydraulic proper-
ties. Therefore, morphological indices of soil structure are crucial in
characterizing the hydraulic behaviour in the MacP flow region
(Lin et al., 1999b).

Caution is required in using these relationships, which were
developed under the evaluated conditions, to other soil conditions
because of the site-specific relationships found and the limited
data set used. However, we must emphasize that those could
be used as support for the validity of the use of the visual
examination for evaluating soil structural quality. Evaluation of
root density and type of soil organic matter present in the soils
should be included in further studies to better understand the
relationships found.

5. Conclusions

Moderate to good relationships were found between visual
examinations and values of soil physical and hydraulic properties.
This supports their use as reliable semi-quantitative methods to
assess soil structural quality. The VSA, the VESS, the visual type of
aggregates index and the visual assessment of aggregate stability
could be considered as encouraging visual estimators of soil
physical properties. Because of the differences in the relationships
demonstrated in this study for soils under contrasting texture and
land use, further studies in correlating morphological evaluations
and quantitative soil physical properties could be done in other soil
textures and management systems. Finally, two aspects should be
emphasized: (i) relationships between visual examinations and
hydrophysical properties are promising; therefore morphological
properties could be worth considering for predicting hydrophy-
sical soil properties; and (ii) from the dissimilarities in terms of soil
quality found between the visual examination of soil structure and
the amount of SOC, SOC should be used cautiously as a sole
indicator for soil structural quality as has been proposed in
literature, because SOC per se is not always well related to the soil
structural quality classes.
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