155 research outputs found

    When “conservation” leads to land degradation: lessons from Ban Lak Sip, Laos

    Get PDF
    Land degradation / Soil erosion / Farming systems / Environmental policy / Political ecology / Households / Population growth / Laos / Ban Lak Sip

    Activation of XerCD-dif recombination by the FtsK DNA translocase

    Get PDF
    The FtsK translocase pumps dsDNA directionally at ∼5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation

    Activation of XerCD-dif recombination by the FtsK DNA translocase

    Get PDF
    The FtsK translocase pumps dsDNA directionally at ∼5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation

    Dislocation Mechanisms During High Temperature Creep Experiments On MC2 Alloy

    Get PDF
    Abstract. The creep behaviour of MC2 single crystal superalloy has been studied at 1150°C/80 MPa, with an applied load along [001] axis. The resulting dislocation microstructures were examined by transmission electron microscopy. The occurrence of a[010] type dislocations (with a zero Schmid factor) within the ordered γ' precipitates is often observed. It is shown that those dislocations moved by a climb process, based on a mechanism involving two dislocation systems and vacancy exchanges, as proposed in the literature. We calculate the vacancy fluxes associated with such a mechanism and show that the vacancy transportation can be easily insured by a simple diffusion process. This calculation shows that the diffusion and climbing steps do not seem to be the creep rate controlling mechanisms for those situations in MC2 alloy

    Cellular location and activity of Escherichia coli RecG proteins shed light on the function of its structurally unresolved C-terminus

    Get PDF
    RecG is a DNA translocase encoded by most species of bacteria. The Escherichia coli protein targets branched DNA substrates and drives the unwinding and rewinding of DNA strands. Its ability to remodel replication forks and to genetically interact with PriA protein have led to the idea that it plays an important role in securing faithful genome duplication. Here we report that RecG co-localises with sites of DNA replication and identify conserved arginine and tryptophan residues near its C-terminus that are needed for this localisation. We establish that the extreme C-terminus, which is not resolved in the crystal structure, is vital for DNA unwinding but not for DNA binding. Substituting an alanine for a highly conserved tyrosine near the very end results in a substantial reduction in the ability to unwind replication fork and Holliday junction structures but has no effect on substrate affinity. Deleting or substituting the terminal alanine causes an even greater reduction in unwinding activity, which is somewhat surprising as this residue is not uniformly present in closely related RecG proteins. More significantly, the extreme C-terminal mutations have little effect on localisation. Mutations that do prevent localisation result in only a slight reduction in the capacity for DNA repair. © 2014 The Author(s)

    SIMcheck:A toolbox for successful super-resolution structured illumination microscopy

    Get PDF
    Three-dimensional structured illumination microscopy (3D-SIM) is a versatile and accessible method for super-resolution fluorescence imaging, but generating high-quality data is challenging, particularly for non-specialist users. We present SIMcheck, a suite of ImageJ plugins enabling users to identify and avoid common problems with 3D-SIM data and assess resolution and data quality through objective control parameters. Additionally, SIMcheck provides advanced calibration tools and utilities for common image processing tasks. This open-source software is applicable to all commercial and custom platforms and will promote routine application of super-resolution SIM imaging in cell biology

    Asymmetry of Chromosome Replichores Renders the DNA Translocase Activity of FtsK Essential for Cell Division and Cell Shape Maintenance in Escherichia coli

    Get PDF
    Bacterial chromosomes are organised as two replichores of opposite polarity that coincide with the replication arms from the ori to the ter region. Here, we investigated the effects of asymmetry in replichore organisation in Escherichia coli. We show that large chromosome inversions from the terminal junction of the replichores disturb the ongoing post-replicative events, resulting in inhibition of both cell division and cell elongation. This is accompanied by alterations of the segregation pattern of loci located at the inversion endpoints, particularly of the new replichore junction. None of these defects is suppressed by restoration of termination of replication opposite oriC, indicating that they are more likely due to the asymmetry of replichore polarity than to asymmetric replication. Strikingly, DNA translocation by FtsK, which processes the terminal junction of the replichores during cell division, becomes essential in inversion-carrying strains. Inactivation of the FtsK translocation activity leads to aberrant cell morphology, strongly suggesting that it controls membrane synthesis at the division septum. Our results reveal that FtsK mediates a reciprocal control between processing of the replichore polarity junction and cell division

    Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus

    Get PDF
    Eubacteria and archaea possess single-circular chromosomes, yet some archaea resemble eukaryotes in using multiple origins and replication forks. Replication termination in Sulfolobus is found to occur by stochastic collision of these forks, and—unlike the situation in eubacteria—it is not linked to chromosome segregation
    corecore